
GiD v17

Copyright © 2024, GiD, CIMNE 1

Customization Manual

GiD

The universal, adaptative and user

friendly pre and postprocessing

system for computer analysis

Developers

Miguel Pasenau de Riera

Enrique Escolano Tercero

Abel Coll Sans

Adrià Melendo Ribera

Anna Monros Bellart

Javier Gárate Vidiella

Laura Santos López

For further information please contact

International Center for Numerical Methods in Engineering

Edificio C1, Campus Norte UPC

Gran Capitán s/n, 08034 Barcelona, Spain

http://www.gidsimulation.com

gid@cimne.upc.edu

http://www.gidsimulation.com/
mailto:gid@cimne.upc.edu

GiD v17

Copyright © 2024, GiD, CIMNE 2

Contents
Customization Manual .. 1

FEATURES... 6

INTRODUCTION .. 8

XML declaration file .. 10

ValidatePassword node ... 11

PROBLEMTYPE SYSTEM ... 13

Structure of the problem type ... 14

Definitions ... 15

Data tree fields .. 15

container .. 16

value .. 17

proc ... 22

condition .. 24

blockdata ... 29

edit_command ... 31

dependencies .. 31

groups ... 32

groups_types ... 32

units ... 32

Style .. 38

function .. 38

include ... 40

Annex I: Using functions .. 40

Annex II: Using matrices .. 55

Access to tree data information .. 57

Xpath .. 58

Main procedures .. 60

Description of the local axes .. 61

Writing the input file for calculation ... 69

User preferences ... 75

Transform file .. 76

Import export materials .. 78

About CustomLib ... 79

CustomLIB extras .. 80

Wizards ... 83

EXECUTING AN EXTERNAL PROGRAM ... 84

Showing feedback when running the solver ... 85

Commands accepted by the GiD command.exe .. 85

Managing errors .. 93

GiD v17

Copyright © 2024, GiD, CIMNE 3

Examples .. 94

PREPROCESS DATA FILES ... 95

Geometry format: Modelname.geo ... 95

POSTPROCESS DATA FILES ...106

Results format: ModelName.post.res ..108

Results example ...120

Mesh format: ModelName.post.msh..129

List file format: ModelName.post.lst ..138

Graphs file format: ModelName.post.grf ..139

Binary format ..140

HDF5 format ...140

TCL AND TK EXTENSION ..143

Event procedures ...144

New ..146

Read ...146

Write ...148

Geometry ..149

Copy / Move ...150

Mesh ...151

Dimensions ...153

Layers ...153

Groups ..154

Start / End ...156

Read / Write ..157

Transform ...158

Materials ...158

Conditions ...159

Intervals ..160

Units ...161

Calculation file ..161

Run ...162

Start/End ...164

GraphsSet ..164

Graphs ..165

Sets ..166

Cuts ..167

Results ...168

GUI ...170

View ..173

Preferences ..174

GiD v17

Copyright © 2024, GiD, CIMNE 4

Licence ...174

Login ...174

DataManager ..175

Other ..175

GiD_Process function ...177

GiD_Info function ..177

Sets ..190

Graphs ..190

display style ..191

results ...192

Special Tcl commands..200

backup ..201

batchfile ..201

set ...201

view ..203

transform_problemtype ...204

write_template ...204

db ...204

detach_mesh_from_geometry ...205

Preprocess mesh ..217

Postprocess mesh ..222

Geometry ..223

Mesh ...223

Definition ...225

Entities ..226

Definition ...228

Entities ..229

Books ...231

CreateData ...231

AssignData ...232

UnAssignData ...232

AccessValueAssignedCondition ..233

ModifyData..233

AccessValue ...234

IntervalData ..234

Units ...235

File ..238

WriteCalculationFile ..239

Definition ...246

Entities ..246

GiD v17

Copyright © 2024, GiD, CIMNE 5

HTML help support ...259

Managing menus ..261

Custom data windows...264

Interaction with themes ...269

GiD version ..275

PLUG-IN EXTENSIONS ..276

Tcl plug-in ...276

GiD dynamic library plug-in ...284

APPENDIX A (PRACTICAL EXAMPLES) ...292

APPENDIX B (classic problemtype system) ...293

PROBLEMTYPE 'CLASSIC' ...294

Conditions file (.cnd) ...295

Problem and intervals data file (.prb) ..301

Materials file (.mat) ...303

Special fields ..305

Unit System file (.uni) ..313

Conditions symbols file (.sim) ...316

Commands used in the .bas file ..318

General description ...340

Detailed example - Template file creation ...341

GiD v17

Copyright © 2024, GiD, CIMNE 6

FEATURES

GiD offers the following customization features:

 Complete menu´s can be customised and created to suit the specific needs of the user´s simulation software.

 Simple interfaces can be developed between the data definition and the simulation software.

 Simple interfaces based on scalar, vector and matrix quantities can be developed for the results visualisation.

GiD v17

Copyright © 2024, GiD, CIMNE 7

 Menus for the results visualisation can be customised and created according to the needs of the application

or analysis.

The customization in GiD is done by creating a Problem Type.

GiD v17

Copyright © 2024, GiD, CIMNE 8

INTRODUCTION

When GiD is to be used for a particular type of analysis, it is necessary to predefine all the information required

from the user and to define the way the final information is given to the solver module. To do so, some files are

used to describe conditions, materials, general data, unit systems, symbols and the format of the input file for

the solver. We give the name Problem Type to this collection of files used to configure GiD for a particular type

of analysis.

Note: You can also learn how to configure GiD for a particular type of analysis by following the Problem Type

Tutorial; this tutorial is included with the GiD package you have bought. You can also download it from the GiD

support web page (http://www.gidsimulation.com).

GiD has been designed to be a general-purpose Pre- and Postprocessor; consequently, the configurations for

different analyses must be performed according to the particular specifications of each solver. It is therefore

necessary to create specific data input files for every solver. However, GiD lets you perform this configuration

process inside the program itself, without any change in the solver, and without having to program any

independent utility.

To configure these files means defining the data that must be input by the user, as well as the materials to be

implemented and other geometrical and time-dependent conditions. It is also possible to add symbols or

drawings to represent the defined conditions. GiD offers the opportunity to work with units when defining the

properties of the data mentioned above, but there must be a configuration file where the definition of the units

systems can be found. It is also necessary to define the way in which this data is to be written inside the file that

will be the input file read by the corresponding solver.

From the 13th version of GiD, a new system of problemtype has been implemented (based in the CustomLIB

library). Although the 'classic' problem type system is still supported by GiD, it is considered deprecated, as the

http://www.gidsimulation.com/

GiD v17

Copyright © 2024, GiD, CIMNE 9

new one offers clear advantages in terms of usability, performance and integration capabilities. Documentation

about the deprecated classic problem type system can be found in the annex of this manual APPENDIX B

(classic problemtype system).

This new problem type definition uses a single .spd file to describe general properties, materials, conditions and

units (as a tree with xml syntax). All this data is showed in a 'tree view', and materials and conditions are

associated to groups of entities.

About writing the input file, Tcl commands are used to write the data in files (optionally aided with the special

function GiD_WriteCalculationFile for efficiency).

The new problem type creation system lean on a collection of tools, which facilitates the development of

advanced problem types for customizing the personal pre and post processor system GiD for computer

simulation codes. It is based on a XML hierarchical structure and an automatic physical tree view.

GiD v17

Copyright © 2024, GiD, CIMNE 10

<Infoproblemtype version="1.0">

<Program>

<Name>XXX</Name>

<Version>XXX</Version>

...

</Program>

</Infoproblemtype>

XML declaration file

The file problem_type.xml declare information related to the configuration of the problem type, such name,

version, file browser icon, password validation or message catalog location, history news, etc.

The data included inside the xml file should observe the following structure:

By default GiD read this file when loading the problemtype and provide its key-value pairs parsed in a Tcl global

array named 'problemtype_current' (e.g. $::problemtype_current(version) returns the version of the problemtype)

Compulsory nodes: (the values of these nodes are just examples)

 <Name>cmas2d_customlib</Name> to provide an identifier name for the problem type.

 <Version>1.0</Version> dotted version number of the problem type.

The name and version of the problemtype is used to compare the version of the problemtype used for a old

model and do an automatic transform if necessary to try to map the old and new data fields.

The 'Internet retrieve' tool also uses Name and Version to compare a local problemtype with the remote copy of

the Internet repository.

Optional nodes:

 <MinimumGiDVersion>12.1.11d</MinimumGiDVersion> to state the minimum GiD version required.

If the problemtype is loaded in a GiD version lower than the one required a warning message will be raised.

<ImageFileBrowser>images/ImageFileBrowser.png</ImageFileBrowser> icon image to be used in the file

browser to show a project corresponding to this problem type. The recommended dimensions for this image

are 17x12 pixels.

GiD v17

Copyright © 2024, GiD, CIMNE 11

<ValidatePassword>

#validation.exe simulates an external program to validade the key for

this computername

 <Icon>images/my_icon.ico</Ico> Windows .ico image to be used in the Windows file browser to show the .

gid folder of the project with the icon corresponding to this problem type. It is recommended a .ico with

multiple resolutions.

 <MsgcatRoot>scripts/msgs</MsgcatRoot> a path, relative or absolute, indicating where the folder with the

name msgs is located. The folder msgs contains the messages catalog for translation.

 <PasswordPath>..</PasswordPath> a path, relative or absolute, indicating where to write the password

information see ValidatePassword node).

 <ValidatePassword></ValidatePassword> provides a custom validation script in order to override the default

GiD validation (see ValidatePassword node).

 <CustomLibAutomatic>1</CustomLibAutomatic> This node must be defined only for 'customLib like'

problemtypes, with values 0 (default) or 1 .If true it allows to do automatic tasks to use the library (otherwise

the problemtype developer must write extra code to use the library, like load packages, initialize the library,

etc.)

 <CustomLibNativeGroups>1</CustomLibNativeGroups> This node must be defined only for 'customLib like'

problemtypes, with values 0 (default) or 1, to specify that the library uses 'native GiD groups' instead of

'pseudo-groups GiD conditions'.

It is possible to set other non-standard nodes, to use

ValidatePassword node

The default action taken by GiD when validating a problem type password is verifying that it is not empty. When

a password is considered as valid, this information is written in the file 'password.txt' which is located in the

problem type directory. In order to override this behaviour, two nodes are provided in the .xml file

 PasswordPath: The value of this node specifies a relative or absolute path describing where to locate/create

the file password.txt. If the value is a relative path it is taken with respect to the problem type path.

Example:

<PasswordPath>..</PasswordPath>

 ValidatePassword: The value of this node is a Tcl script which will be executed when a password for this

problem type needs to be validated. The script receives the parameters for validation in the following

variables:

key with the contents of the password typed,

dir with the path of the problem type, and

computer_name with the name of host machine.

Note: It's like this Tcl procedure prototype: proc PasswordPath { key dir computer_name } { ... body... }

The script should return one of three possible codes:

0 in case of failure.

1 in case of success.

2 in case of success; the difference here is that the problem type has just saved the password information so

GiD should not do it.

Furthermore, we can provide a description of the status returned for GiD to show to the user. If another status is

returned, it is assumed to be 1 by default.

Below is an example of a <ValidatePassword> node.

GiD v17

Copyright © 2024, GiD, CIMNE 12

#instead an external program can be used a tcl procedure

if { [catch {set res [exec [file join $dir validation.exe] $key

$computername]} msgerr] } {

return [list 0 "Error $msgerr"]

}

switch -regexp -- $res {

failRB {

return [list 0 "you ask me to fail!"]

}

okandsaveRB {

proc save_pass {dir id pass} {

set date [clock format [clock second] -format "%Y %m %d"]

set fd [open [file join $dir .. "password.txt"] "a"]

puts $fd "$id $pass # $date Password for Problem type '$dir'"

close $fd

}

save_pass $dir $computername $key

rename save_pass ""

return [list 2 "password $key saved by me"]

}

okRB {

return [list 1 "password $key will be saved by gid"]

}

default {

return [list 0 "Error: unexpected return value $res"]

}

}

</ValidatePassword>

GiD v17

Copyright © 2024, GiD, CIMNE 13

PROBLEMTYPE SYSTEM

A problem type is a collection of utilities, which allows the user to interact easily with them by means of a

Graphical User Interface (GUI), and facilitates the definition and introduction of all the data necessary for

carrying out a particular calculation. In order for GiD to prepare data for a specific analysis program, it is

necessary to customize it. The customization is defined in GiD by means of a problem type.

The new system of problem types creation adds some additional capabilities compared with the classic one:

 It takes advantage of the XML (Extensible Markup Language) format features and its hierarchical structure.

It stores data more efficiently. The elements in a XML document form a tree-structure that starts at “the root”

and branches to “the leaves” with different relationships between the nested elements.

 It permits to process automatically XML documents on a physical data tree view on the GiD window for

interfaces creation.

 It facilitates the automatic creation of standard windows in the data tree to enter input dates. It couples

geometry or mesh entities with identical properties into the called groups using these standard windows.

 It permits to couple entities with identical properties into groups. In this way, it couples geometry or mesh

entities with identical properties into the called groups using these standard windows.

 It allows to apply efficiently geometry properties and boundary conditions (i.e. constraints, loads,

materials…) into groups and to edit their properties easily.

 In order to configure GiD for a specific type of analysis, it is possible to set the data tree hiding the required

parts automatically.

GiD v17

Copyright © 2024, GiD, CIMNE 14

 It allows to fix the data tree hiding concrete parts if this is convenient, for a specific type of analysis.

 It couples all the common features of the different problem types.

 It facilitates the introduction of all the data to transfer to an analysis program.

Structure of the problem type

The problem type is defined using a directory with the its name and a set of files. The directory with the problem

type will be located in the problemtypes directory in the GiD distribution, or in a subdirectory of it.

Note: now it is also possible to have a /problemtypes extra folder located at the <GiD user preferences folder>.

This is interesting in case that the user doesn't has privileges to copy a problemtype inside <GiD folder>

/problemtypes

This set of files define the problemtype and contain the full functionality for customizing the pre-process. The

main files that configure the problem type are shown in the table below.

File extension Description

<namd>.xml Simple declarations of name, version, etc. XML-based

<name>.spd Main configuration file of the data tree, XML-based

<name>.bas Template with simple GiD syntax to create data input file.

<name>.tcl Main Tcl/Tk file, initialization. e.g. to create data input file.

<name>.cnd Conditions definition. It should not be modified by the user

<name>.transform To aid to convert data from a model created with an old version of the problemtype

 <name>.spd main configuration file of the data tree, XML-based.

The main configuration file in XML format contains the definition of all the data (except the geometry)

necessary to perform an analysis. It is defined in XML format with the extension .spd (specific problem type

data) and contains all the definition of all the data that defines the analysis like boundary conditions, loads,

materials, load cases, etc.

The syntax rules of the .spd file are very simple, logical, concise, easy to learn and to use. The file is

human-legible, clear and easy to create. Moreover, the information is stored in plain text format. It can be

viewed in all major of browsers, and it is designed to be self-descriptive.

The elements in a XML document form a tree-structure that starts at "the root" and branches to "the

leaves" with different relationships between the nested elements. It allows to aggregate efficiently

elements. CustomLib takes advantage of this hierarchical structure to convert automatically the main XML

file to a physical tree on the GiD window. The XML elements can have attributes, which provide additional

information about elements.

It is necessary to modify this XML document in order to add conditions, or general data to the problem type.

 <name>.tcl Main Tcl file, initialization

A Tcl initialization file is used to create complex windows or menus. Contains the initialization routines. Can

source other Tcl files.

 Output description to the file of analysis

A Tcl file located in the <scripts> folder determines the way in which the final information has to be written

inside the input files that will be read by the solver.

GiD v17

Copyright © 2024, GiD, CIMNE 15

<cmas2d_customlib_data version='1.0'>

...

</cmas2d_customlib_data>

 <name>.cnd

File with extension .cnd is used but should not be modified by the problemtype creator. It is only required if local

axes are used.

 <name>.transform

An optional file that describe how to map old names into current problemtype names. Is used to read

models created with old versions of the problemtype, with some differences of names, etc along the

versions.

Definitions

CustomLib defines its own XML tags, which clearly describes its content. For more information about this

attribute, see the section Data tree fields.

 TDOM library

The tDOM library is used by the Toolkit due to it combines high performance XML data processing with easy

and powerful Tcl scripting functionality. tDOM is one of the fastest ways to manipulate XML and it uses very little

memory in the process of creating a DOM tree from a XML document. In TDOM terminology we call 'field' to the

'Element name' and 'parameter' to the 'attribute'. All data is stored in fields and parameters, where the

parameters can contain a value, a xpath expression or a [Tcl command].

 xpath

XPath is a language for addressing parts of an XML document using path notations.

It is used for navigating through the hierarchical structure of a XML document to extract information. It is based

on a tree of nodes representing the XML file.

It provides the ability to navigate around the tree, selecting nodes from it and computing string-values.

xpath expression -> A search is performed and the result is substituted in the parameter when necessary.

[Tcl command] -> The command between brackets is executed when necessary and the return value is

replaced inside the parameter.

Data tree fields

The fields and parameters of the main configuration file (.spd) of the data tree, are described below.

PT_data

<PT_data>

Main root field of the .spd file. It contains the version number and the name of the problem type.

PT must be replaced by the problem type name.

version - Internal version number.

e.g. if the problemtype is named 'cmas2d_customlib' the main node will be

GiD v17

Copyright © 2024, GiD, CIMNE 16

container

<container>

This is the simplest form to group the data for improving its visualization.

On the resulting window, in addition to the inputs there will be the following set of buttons:

It can contain the following fields: <value>, <container>, <condition>, <function>, <dependencies>

The parameters are as follows,

n - Name used to reference the field, especially when writing the .dat file.

pn - Label that will be visualized by the user. It can be translated.

icon - It allows to put an image in .png format in the data tree. The image should be stored inside the images

folder of the problem type.

help - It displays a pop-up window of help information related to the task the user is performing.

help_image - declare an image filename with the image to be shown below the help text. The file must be

located inside a problemtype folder named 'images' and the help attribute is required to use help_image

state - Specifies one of two states for the field: normal, or hidden. Note that hidden <container> field can be

used for storing hidden values, that you do not want to show in the user interface. It also permits to handle a Tcl

function, by means of square brackets.

update_proc - It calls a Tcl procedure, when clicking on the 'Ok' button in the window. (must not add square

brackets in this case). The Tcl procedure must be defined in a <proc> node of the spd

actualize_tree - It updates the information in the whole data tree, and automatically refresh data shown in the

user interface. It is a boolean value as a 1 or 0 that indicates if it is activated or deactivated. If the data source is

changed, such as new fields have been added or data values and field have been modified, all the user

interface will reflect those changes. Furthermore, all the TCL procedures defined in the data tree will be called

and the whole data tree will be refreshed. Therefore, this instruction must be carried out only when necessary.

actualize - This only updates a specified field in data tree. Note that only this specified field will be refreshed in

the user interface, and not the whole data tree. It is a boolean value as a 1 or 0 that indicates if it is activated or

deactivated.

del_cancel_button - It is a boolean value as a 1 or 0 that indicates if the cancel button is removed (1) or not

(0). On the resulting window there will be only the 'OK' button, as follows,

Fields to allow customize tree contextual menu:

addcontextualmenu -To add a new option to the menu. Expects a Tcl list of items, each item with subitems

"icon text tcl_command"

replacecontextualmenu -To replace a menu option. Expects a Tcl list of items, each item with subitems

"old_text icon text tcl_command"

removecontextualmenu -To remove a menu options. Expects a Tcl list of items, each item with subitems

"old_text"

title - 0 or 1

icon_end - an icon name

tree_state "open" or "close"

Example:

GiD v17

Copyright © 2024, GiD, CIMNE 17

<container n='general_data' pn='General data' icon='general'>

<value n='max_iterations' pn='Maximum iterations' value='1e3'

help='limit of iterations for iterative solver'/>

<value n='stop_tolerance' pn='Stop tolerance' value='1e-8'/>

</container>

<blockdata n="Simulation_type" pn="Simulation data" icon="

[icon_simtype]" addcontextualmenu="{advanced-16 {Add option 1}

CompassFEM::Test} {advanced-16 {Add option 2} CompassFEM::Test}"

replacecontextualmenu="{{Edit} advanced-16 {Edit mod.} CompassFEM::

Test} {{View this} advanced-16 {View this mod.} CompassFEM::Test_mod}"

removecontextualmenu="{View this} {Edit}"</blockdata>

Example: (customize contextual menu)

value

<value>

It is the main field to store data. This field allows to define an entry, or a combobox in the window.

It can contain the following fields: <function>, <dependencies>, <edit_command>

The parameters are as follows,

n - Name used to reference the field, especially when writing the .dat file.

pn - Label that will be visualized by the user. It can be translated.

v - The value or default value for a 'value' field

icon - An optional icon name

state - Specifies one of the four states for the entry: normal, disabled, hidden or readonly. If the entry is

readonly, then the value may not be changed using widget commands and no insertion cursor will be displayed,

even if the input focus is in the widget; the contents of the widget may still be selected. If the entry is disabled,

the entry may not be changed, no insertion cursor will be displayed and the contents will not be selectable. Note

that hidden entry can be used for storing hidden values. It also permits to define a Tcl function, by means of

square brackets.

values - Comma-separated list of strings to fill a combobox. For instance, values="mech,therm". Can call a Tcl

proc including arguments, with [] like values='[GetMyValues]'.

The Tcl procedure must be defined in a <proc> node of the spd or now directly as a normal Tcl procedure, in

this case it is possible to add as argument %W that will be replaced with the dom node (this become simpler

that a double step of define an extra <proc> node that finally call to a Tcl proc, e.g. values='[GetMyValues %W]')

values_tree - A drop-down tree to fill a combobox, defined by a comma-separated list of strings. It can call a Tcl

proc, by means of square brackets [], that must returns a list of comma-separated strings, each one represented

as the format: "level_in_the_tree name_in_dropdown_tree name_in_combobox enable_boolean". For instance,

a drop-down tree defined as (see image below): values_tree="0 Air Air material 1,0 Steel Steel material 1,0

Aluminium Aluminium material 0,1 Aluminium Aluminium material 1"

GiD v17

Copyright © 2024, GiD, CIMNE 18

<value n="SomeReal" pn="A real number" v="0.5" string_is="double"

validate_expr="%P>=0.0 && %P<=1.0"></value>

dict - Comma-separated list of key,value. This operation places a mapping from the given key to the given

value, which is shown in the GUI. Values can be translated.

For instance, dict="mech,Mechanical,therm,Thermal" shows Mechanical and Thermal.

string_is - Tests the validity of various interpretations of a string, as follows:

integer - To test if a string is an integer value.

integer_or_void - To test if a string is an integer value, or empty (not-filled).

double - To test if a string is a double value.

double_or_void - To test if a string is a double value, or empty (not-filled).

% - To test if a string is a percentage (%).

list_of_double - To test if a string is a list of doubles, representing a data structure of doubles in Tcl.

entier - To test if a string is an integer (of any size), written in one of the forms Tcl can parse, or an integer

in scientific notation (for instance 1e30).

entier_or_void - To test if a string is an integer (of any size), written in one of the forms Tcl can parse, or an

integer in scientific notation (for instance 1e30), or empty (not-filled).

double_coord - a string of doubles separated by commas (without extra spaces)

double_positive - a double >=0.0

double_positive_non_zero - a double > 0.0

Example:

validate_expr - To validate with an arbitrary valid Tcl expression. The symbolic argument %P represent the

user value to be validated. If the expr is true the value is accepted.

Be careful, this command is defined inside a XML file and special characters like > < & must be encoded. For

example the string "%P>=0.0 && %P<=1.0" must be encoded with "%P>=0.0 && %P<=1.0"

Example: to force user values of type double but in the range from 0.0 to 1.0

format_command - with a Tcl proc name to format the value calling it. The Tcl proc has as arguments value

and unit and must return the new value

Example: to format a real number entry with two decimals

<value n="SomeInteger" pn="An integer number" v="1" string_is="integer"

help="example of a input value that check that the user enter a valid

integer string"></value>

GiD v17

Copyright © 2024, GiD, CIMNE 19

<value n="Weight" pn="Weight" v="0.0" unit_magnitude="M" units="kg"

string_is="double_positive_non_zero" format_command="

my_format_two_decimals"/>

proc my_format_two_decimals { value units } {

return [format "%.2f" $value]

}

<container n="get_coord" pn="Get coordinates">

<value n="coord" pn="Get coordinates" fieldtype="vector"

And the Tcl proc used

help - It displays a pop-up window of help information related to the task the user is performing.

actualize_tree - It updates the information in the whole data tree, and automatically refresh data shown in the

user interface. It is a boolean value as a 1 or 0 that indicates if it is activated or deactivated. If the data source is

changed, such as new fields have been added or data values and field have been modified, all the user

interface will reflect those changes. Furthermore, all the TCL procedures defined in the data tree will be called

and the whole data tree will be refreshed. Therefore, this instruction must be carried out only when necessary.

actualize - This only updates a specified field in data tree. Note that only this specified field will be refreshed in

the user interface, and not the whole data tree. It is a boolean value as a 1 or 0 that indicates if it is activated or

deactivated.
menu_update - It allows to update the menus.Values can be yes or no. It is necessary to define a

<dependencies> field, as follows,

<dependencies node="/*/blockdata[@n='General_Data']/value[@n='analysis_type']" att1="menu_update" v1="

[TCL_proc]" actualize="1"/>

fieldtype - To declare specialized values for common scenarios. It can be:

 long text - It creates a text box in the user interface in order to introduce a multi-line text.

 vector: to show 1, 2 or 3 entries for each component of a vector. The value v will be filled with a string

separating by comma each component (like v="1.0,0.0,0.0" for dimensions 3)

other optional attributes for vector

 dimensions: could be usually 1, 2, 3 (but is possible to set more than 3 to have more columns)

 pick_point : 1 , with dimensions='1', to declare the field as special to store a point id, and show an extra

button on the right to pick a point interactively

 pick_surf: 1 , with dimensions='1', to pick a surface

 pick_vector: 1 , with dimension='3', to select x y z coordinates

Example:

pick_coordinates - It is a boolean value as a 1 or 0 that indicates if the entry must show a button that allow

click a coordinate interactively.

Example:

<container n="some_points" pn="some points">

<value n="some_point" pn="Some point" fieldtype="vector"

dimensions="1" string_is="integer_or_void" pick_point="1" help="To

enter a point"/>

</container>

GiD v17

Copyright © 2024, GiD, CIMNE 20

dimensions="3" format="%.6g" v="0.0,0.0,0.0" pick_coordinates="1" help="

Please enter coordinates\n(x,y,z)">

<dependencies node="../value[@n='point']" att1="v" v1="{@v}"/>

</value>

</container>

<container n="test" pn="my test">

<value n="what_to_write" pn="what to write" v="Velocity,Pressure"

values_check="[check_what_to_write %W]"></value>

</container>

proc check_what_to_write { domnode } {

set items [list]

lappend items "Velocity"

lappend items "Pressure"

lappend items "Temperature"

return [join $items ","]

}

editable - It is a boolean value as a 1 or 0 that indicates if the entry could be changed or not. If it is activated (1)

the entry may not be changed, no insertion cursor will be displayed and the contents will not be selectable.

unit_magnitude - Physical quantity (i.e. L, for Length). For more information about this attribute, see the

section Description of the units

units - Unit of the physical quantity (i.e. m). For more information about this attribute, see the section

Description of the units

units_state - Optional attribute (used with units) that can be set to 'disabled', then that the units combo_box

won't be unfolded and the user cannot change its unit.

function - Contains a Tcl command, which is executed when is called. It permits to create or edit a function for

a determined entry.

function_func - Permits to define a TCL function.

values_check - Special field to shown a collection of checkboxes that can be set by the user at runtime. Must

call a Tcl function, by means of square brackets, that return a comma separated list of items. The value v will

be set to the selected names (comma separated)

Example:

.spd file (XML)

.tcl file

When the user click the 'my_test' tree item the window is showed to allow select with a checkbox the user

selection.

GiD v17

Copyright © 2024, GiD, CIMNE 21

<value n='units_length' pn='Length' unit_definition='L'/>

<value n='units_mass' pn='Mass' unit_definition='M'/>

<value n='units_force' pn='Force' unit_definition='F'/>

<value n="units_mesh" pn="Geometry units" unit_mesh_definition="1"/>

<value n='units_system' pn='Units system' units_system_definition='1'

icon='units-16'>

min_two_pnts - It is a boolean value as a 1 or 0 and indicates that two points or more are required in a linear

interpolation.

unit_definition - The fields <value/> used to choose the default units in the GUI are special. They contain the

attribute called unit_definition="magnitude" being magnitude the name 'n' to be used in that field. It is important

to note that these kind of fields does not contain dependencies.

show_in_window - Can be 1 or 0 (1 by default). It indicates if the value must be shown in the conditions

window. If set to 0, the value will be shown in the tree, but will be hidden in the window.

Example:

unit_mesh_definition - The field <value/> used to choose the mesh unit is special. It has the attribute

unit_mesh_definition="1", and it does not contain any "v" attribute or dependencies.

Example:

units_system_definition - The field <value/> used to choose the units system is special. It has the attribute

units_system_definition="1", it does not contain any "v" attribute, and it contains a unique dependency related to

the unit fields.

Example:

GiD v17

Copyright © 2024, GiD, CIMNE 22

<procs>

<proc n='GetMaterialsList' args='args'>

Cmas2d::GetMaterialsList $domNode

</proc>

proc

<proc>

This kind of xml node allows to define a Tcl scripting procedure that could be called in other field nodes, like

values.

The parameters are as follows,

n - Name of the proc used in other xml nodes.

args - optional, it will be set as a list with all arguments provided in the uses of other xml nodes.

If the proc is defined in the xml then it has some tricky implicit arguments:

The local variable named domNode is 'magically' filled with the xml dom node of the caller, and there could be

other optional variables that can be set with special options in the arguments

{ -tree tree "" }

{ -boundary_conds boundary_conds "" }

{ -item item "" }

{ -dict dict "" }

{ -dict_units dict_units "" }

the list with the rest of provided arguments will be in the variable args.

It is possible to collect all <proc> nodes inside a <procs> xml node, but nowadays it is recommended to do it in

a Tcl file (it is easier to edit, debug,...), and pass the desired optional arguments with %W, %TREE, %ITEM, %

BC, %DICT, %DICT_UNITS

The arguments are described as follows:

%W: It is the current domNode id in the XML TDOM data structure that store the tree data (it is serialized in the .

spd file). It should be noted that %W is not the path name of a window.

%TREE: It is the path name to a tree widget of class "TreeCtrl" in the GUI (e.g: .gid.central.boundaryconds.gg.ft.

t)

%ITEM: Is is an integer id of the tree widget item

%BC: It is the path name to a widget of class "Boundary_conds" parent of the tree widget in the GUI (e.g. .gid.

central.boundaryconds.gg)

%DICT: It gives a dictionary ‘key-value’, with data of the current selected node (<value n=”material”…/>). It is

created internally by CustomLib, and in principle the user do not have to do anything with this parameter.

%DICT_UNITS: similar to DICT but for the units, if any.

Example:

<dependencies node="//*[@unit_definition or

@unit_mesh_definition='1']" att1='change_units_system' v1='{@v}'/>

</value>

http://gid.central.boundaryconds.gg/
http://gid.central.boundaryconds.gg/
http://gid.central.boundaryconds.gg/

GiD v17

Copyright © 2024, GiD, CIMNE 23

<proc n='EditDatabaseList' args='args'>

Cmas2d::EditDatabaseList $domNode $dict $boundary_conds $args

</proc>

</procs>

proc Cmas2d::GetMaterialsList { domNode args } {

set dom_materials [$domNode selectNodes {//container[@n="

materials"]}]

set result [list]

foreach dom_material [$dom_materials childNodes] {

lappend result $[$dom_material @name

}

return [join $result ,]

}

proc Cmas2d::EditDatabaseList { domNode dict boundary_conds args } {

...

}

<value n="material" pn="Material" editable="0" help="Choose a material

from the database" values="[Cmas2d::GetMaterialsList %W]" v="Air">

<edit_command n="Edit materials" pn="Edit materials" icon="darkorange-

block1.png" proc="Cmas2d::EditDatabaseListDirect %W %DICT %BC"/>

</value>

</condition>

And in a .tcl file can define the true procs (it is possible write the code in the spd <proc> but it is better for debug

to separate in a Tcl file).

Example:

It is also possible to use the arguments %W, %DICT and %BC in order to define the procedures directly in the

Tcl file, instead of in the original <procs/> node of the .spd file. For instance, there are the procedures “Cmas2d::

GetMaterialsList %W" and "Cmas2d::EditDatabaseListDirect %W %DICT %BC" defined in the .spd file in the

problem type cmas2d_customLib.gid.

Return value: to update the widgets of the window that called the proc with an edit_command it is possible to

return a list with two dictionaries: the first dictionary with the keys and values to be set, and the second

dictionary to set units.

Example:

spd file (XML)

<container n="Points_of_loads" pn="Points of loads">

<value n="point1" pn="N. point 1" v="" string_is="integer_or_void"

help="Number of the point in the geometry to attribute the value 1 of

the load">

GiD v17

Copyright © 2024, GiD, CIMNE 24

<edit_command n="select_points" pn="Select Points" proc="

MyProcSelectPoint %W" icon="point"/>

</value>

</container>

proc MyProcSelectPoint { dom_node } {

set my_dict ""

set id [GidUtils::PickEntities Points single [= "Pick a geometry

point"]]

if { $id != "" } {

set question [$dom_node @n]

#Note: in this case we knot that question is 'point1' but this

show an use of the dom_node argument

set my_dict [dict set my_dict point1 $id]

}

return [list $my_dict ""]

}

Tcl file

condition

<condition>

It contains some inputs with values and can be applied to groups. For each applied group, a dependent set of

values will be created that belong to that group, for this condition.

A group is a category that brings together selected entities (points, lines, surfaces and/or volumes) with identical

properties. I should be noted that any entity can belong to more than one group (unlike the concept of layer,

where any entity cannot belong to more than one layer).

It can contain the following fields: <value>, <dependencies>, <edit_command>

On the resulting window, in addition to the inputs there will be the following set of buttons:

Button 'Select' enables to create a group and choose entities into it.

ov, ovi, i=1,2 - Indicates to which entity types can a 'condition' be applied. Can be one or several of the

following values: point, line, surface, volume.

Note: usually a condition is attached to a group, and ov is used, but some special conditions are attached to two

groups, then ov1 and ov2 must be used (for example could be used to define master-slave parts)

ovp, ovpi, i=1,2 - Optional, to visually show an string alternative to the ov keyword values

ov_default - Indicates the default entity type selected (used in case of ov with multiple types). Can be one, and

only one of the following values: point, line, surface, volume.

GiD v17

Copyright © 2024, GiD, CIMNE 25

<condition n="Point_Weight" pn="Point Weight" icon="constraints"

groups_icon="groups-16">

...

</condition>

<condition n="Point_Weight" pn="Point Weight" ov="point" ovm="node"

icon="darkorange-weight-18" groups_icon="yelowish-group" help="

Concentrated mass" update_proc="my_validate_point_weigth_child_values %

W %TREE %BC">

<value n="Weight" pn="Weight" v="0.0" unit_magnitude="M" units="kg"

help="Specify the weight that you want to apply"/>

<symbol proc="gid_groups_conds::draw_symbol_image weight-18.png"

orientation="global"/>

</condition>

ovm, ovmi, i=1,2 - Indicates to which entity can a 'condition' be applied. It can be element, node, face_element

or ""

ov_element_types - Optional, to restrict the element types that could be applied. Must be a list of comma

separated of the following values: linear, triangle, quadrilateral, tetrahedra, hexahedra, prism, point, pyramid,

sphere, circle (by default all element types are allowed)

state - Specifies one of two states for the field: normal, or hidden. Note that hidden <container> field can be

used for storing hidden values, that you do not want to show in the user interface. It also permits to handle a Tcl

function, by means of square brackets.

groups_icon -It allows to put a custom image when creating groups in the data tree, with .png format. The

image should be stored inside the images folder of the problem type.

allow_group_creation - It is a boolean value as a 1 or 0 that allows to specify that only existing groups can be

chosen in the condition window. It is activated by default. A groups_list attribute must be added when it is

deactivated, as a procedure returning a list of groups (i.e. groups_list="[my_groups_proc]").

Example:

before_update_proc - Set to a Tcl procedure name to be called when choosing this field in data tree.

update_proc - It calls a Tcl procedure, when clicking on the 'Ok' button in the window or when changing the

value of the entry.

Must be a Tcl procedure name with possible extra special arguments %W, %TREE, %BC, see proc

This procedure can for example validate user values

Example:

and define in a .tcl file this proc named my_validation that will receive as argument the tdom node of this

condition. In this case is using the GiD proc W to show the tdom data in XML format

and modify the format of the value child nodes to force 2 decimals ("%.2f" format)

GiD v17

Copyright © 2024, GiD, CIMNE 26

symbol

<symbol>

Every condition can have a symbol, that will be drawn when the user selects Draw symbols in the contextual

menu that appears on user interactions such as right-mouse click operation.

The symbol is defined by a field <symbol> inside the condition. The available XML parameters are:

proc: Includes the name of a TCL proc to be defined in the TCL files of the problemtypes. In that proc, OpenGL

is used to make the real drawing.

The procedure must return the id of a OpenGL drawing list (created by GiD_OpenGL draw -genlists 1), or a dict

with some required keys depending on the orientation attribute value.

The proc is invoked adding automatically an extra argument: valuesList with a list of key value of the condition

values stored in the tree.

orientation: can be global, local, localLA, free or have some special values section, shell_thickness, loads

to invoke internally predefined drawings.

 global means that the symbol defined in the proc will be draw with its axes corresponding to that of the

global axes of the model.

 local means that the symbol will be drawn related to a local axes system dependent on the entity.

 For lines, these local axes system will have x' axe parallel to the line. For surfaces, the z' axe will be parallel

to the surface normal

(for lines some extra correction of the local axes could be applied)

 localLA is similar to local, in this case is compulsory attach local axis to entities, implicit automatic local axis

of lines and surfaces are not used (and without the extra correction in case of lines)

proc my_validate_point_weigth_child_values { domNode tree

boundary_conds } {

#W [$domNode asXML]

set xpath {./group/value[@n='SomeReal']}

foreach value_node [$domNode selectNodes $xpath] {

set value [$value_node getAttribute v]

set txt [format "%.2f" $value]

$value_node setAttribute v $txt

if { [winfo exists $boundary_conds] } {

#update the GUI tree widget also

set item_id [$boundary_conds get_item_from_domNode

$value_node]

$tree item element configure $item_id 0 e_text -text $txt

}

}

return 0

}

GiD v17

Copyright © 2024, GiD, CIMNE 27

 section used for lines to draw bar section profiles in its local axes. (some extra correction of the local

axes could be applied)

In this case the proc must return a dict Tcl object with keys named:

 obj the integer representing the opengl list to be drawn.

 shell_thickness to draw the surface with a thickness.

In this case the proc must return a dict Tcl object with keys named:

 thickness with the value of the thickness associated to the surface.

 cdg_pos (optional) with the list of the 3 components of the center position

 loads to represent loads.

In this case the proc must return a dict Tcl object with keys named:

 load_type with possible values global, global projected, local

 load_vector with a list of 3 components of the vector

e.g. return [dict create load_type $load_type load_vector $load_vector]

 free is another special value, in this case the Tcl procedure will be called once by entity with the

condition to be draw, instead of only once by group.

The proc is invoked adding automatically some extra arguments: valuesList geom_mesh ov num pnts

points ent_type center scale

this allow to know the information of the entity.

geom_mesh: GEOMETRYUSE or MESHUSE

ov: point line surface volume node element

num: <entity id>

pnts: in case of lines integer?, in case of surfaces its boundary lines and orientations <{line_1

SAME1ST|DIFF1ST} ... line_n SAME1ST|DIFF1ST}>

points: in case of lines <{x1 y1 z1} {x2 y2 z2}> start and end coordinates, in case of lines the boundary

point coordinates

ent_type: STLINE, ...

center: <x y z>

scale: <scale_to_draw>

The local axes are defined by a special 'classical condition' (point_Local_axes, line_Local_axes, ...)

assigned to the entities, or if there is not assigned this 'local axis' then the implicit local axis for lines and

surfaces is used (based in its tangent and normal respectively)

There are Tcl predefined procedures to facilitate drawing with OpenGL:

gid_groups_conds::import_gid_mesh_as_openGL <filename> <color_lines> <color_surfaces>

To automatically import a GiD mesh file to be drawn with OpenGL.

The filename to be read must be a GiD ASCII mesh of lines, triangles and quadrilaterals (with as few

elements as as possible). This mesh could be exported from the menu Files->Export->GiD mesh. The

procedure read the mesh and invoke GiD_OpenGL draw commands.

The mesh must represent a normalized shape, centered at the origin and contained in a box of size 1 for

every of its dimensions (a 2x2x2 cube)

gid_groups_conds::draw_symbol_image <image> <values_list>

GiD v17

Copyright © 2024, GiD, CIMNE 28

<condition n="Point_Weight" pn="Point Weight" ov="point" ovm="node"

icon="constraints" help="Concentrated mass">

<value n="Weight" pn="Weight" v="0.0" unit_magnitude="M" units="kg"

help="Specify the weight that you want to apply"/>

<symbol proc="gid_groups_conds::draw_symbol_image darkorange-weight-

18.png" orientation="global"/>

</condition>

<condition n="Point_Weight" pn="Point Weight" ov="point" ovm="node"

icon="constraints" help="Concentrated mass">

<value n="Weight" pn="Weight" v="0.0" unit_magnitude="M" units="kg"

help="Specify the weight that you want to apply"/>

<symbol proc="Cmas2d::DrawSymbolWeight" orientation="global"/>

</condition>

proc Cmas2d::DrawSymbolWeight { values_list } {

variable _opengl_draw_list

if { ![info exists _opengl_draw_list(weight)] } {

set _opengl_draw_list(weight) [GiD_OpenGL draw -genlists 1]

GiD_OpenGL draw -newlist $_opengl_draw_list(weight) compile

set filename_mesh [file join [Cmas2d::GetDir] symbols weight_2d.

msh]

gid_groups_conds::import_gid_mesh_as_openGL $filename_mesh

black blue

To automatically import in image file to be drawn with OpenGL.

The image must use some valid image format (png, gif, jpg,...), and is expected to be inside a folder

named /images of the problemtype

The values_list argument is currently not used.

 gid_groups_conds::draw_symbol_text <txt> <values_list>

To automatically print a text with OpenGL.

The values_list argument is currently not used.

Note: The package gid_draw_opengl also contains some predefined interesting procedures, and some .msh

files with common symbols to be used by gid_groups_conds::import_gid_mesh_as_openGL

Example:

Example:

And its Tcl drawing procedure, assuming that the mesh file named weight_2d.msh is located in the symbols

folder or the problemtype:

GiD v17

Copyright © 2024, GiD, CIMNE 29

blockdata

<blockdata>

Represents a set of properties with some kind of relationship. A 'blockdata' field can copy itself, to duplicate and

create several sets. It can contain the following fields: <value>, <container>, <condition>, <function>,

<dependencies>, and other <blockdata>

n - Name used to reference the field, especially when writing the .dat file.

name - Label that will be visualized by the user. It can be translated.

sequence - It allows a 'blockdata' field to by duplicated and copied by the user in order to create several sets.

Like several load cases with its 'value' and 'condition' included. If it has the 'sequence' parameter activated, it is

possible for the user to create consecutive repetitions of the full block data in order to represent, for example,

loadcases with all its conditions inside.

sequence_type - It can be:

any - The list can be void (this is the default)

non_void_disabled - At least there needs to be one element. It can be disabled.

non_void_deactivated - At least there needs to be one element. It can be deactivated.

editable_name - can be void '' or 'unique'. The 'unique' means that it is not possible to use the same name ('pn'

field), for two different 'sequence' 'blockdata'.

morebutton - It is a boolean value as a 1 or 0 to show a 'More...' button in fields of type 'blockdata'. It is

activated by default. For more information about this attribute, see the section Import export materials

can_delete_last_item - A single blockdata could be deleted.

before_update_proc - Set to a Tcl procedure name to be called when choosing this field in data tree.

update_proc - Set to a Tcl procedure name to be called when clicking on the 'Ok' button in the window.

delete_proc - Set to a Tcl procedure name to be called when delete the blockdata

check_values . Set to a Tcl procedure name

icon - It allows to put an image in .png format in the data tree. The image should be stored inside the images

folder of the problem type. A Tcl procedure can be used to return the name at runtime.

GiD_OpenGL draw -endlist

}

set weight_and_unit [lrange [lindex $values_list [lsearch -index 0

$values_list Weight]] 1 2]

set weight [lindex $weight_and_unit 0]

set scale [expr {$weight*0.1}]

set transform_matrix [list $scale 0 0 0 0 $scale 0 0 0 0 $scale 0 0

0 0 1]

set list_id [GiD_OpenGL draw -genlists 1]

GiD_OpenGL draw -newlist $list_id compile

GiD_OpenGL draw -pushmatrix -multmatrix $transform_matrix

GiD_OpenGL draw -call $_opengl_draw_list(weight)

GiD_OpenGL draw -popmatrix

GiD_OpenGL draw -endlist

return $list_id

}

GiD v17

Copyright © 2024, GiD, CIMNE 30

help - It displays a pop-up window of help information related to the task the user is performing.

state - Specifies one of two states for the field: normal, or hidden. Note that hidden <container> field can be

used for storing hidden values, that you do not want to show in the user interface. It also permits to handle a Tcl

function, by means of square brackets.

allow_import - It is a boolean value as a 1 or 0 that allows to add the 'Import/export materials' item in the

contextual menu for a specific 'blockdata' field. It is deactivated by default. For more information about this

attribute, see the section Import export materials

Example

Blockdata example

<container n="Intervals" pn="Time intervals" un="Intervals" icon="

time2" open_window="0">

<blockdata n="Interval" pn="Interval" name="Initial" sequence="

1" icon="time3" editable_name="unique" sequence_type="

non_void_disabled" help="Interval">

<value n="IniTime" pn="Start time" v="0.0" state="

disabled" help="When do the interval starts?"/>

<value n="EndTime" pn="End time" v="0.0" state="

disabled" help="When do the interval ends?"/>

</blockdata>

<blockdata n="Interval" pn="Interval" name="Total" sequence="1"

icon="time3" editable_name="unique" sequence_type="non_void_disabled"

help="Interval">

<value n="IniTime" pn="Start time" v="0.0" state="

disabled" help="When do the interval starts?"/>

<value n="EndTime" pn="End time" v="End" state="

disabled" help="When do the interval ends?"/>

</blockdata>

<blockdata n="Interval" pn="Interval" name="Custom1" sequence="

1" icon="time3" editable_name="unique" sequence_type="

non_void_disabled" help="Interval">

<value n="IniTime" pn="Start time" v="0.0" help="When

do the interval starts?"/>

<value n="EndTime" pn="End time" v="0.5" help="When do

the interval ends?"/>

</blockdata>

</container>

GiD v17

Copyright © 2024, GiD, CIMNE 31

edit_command

<edit_command>

It adds a button in the window that allows to call a TCL procedure when necessary. The parameters are as

follows,

n - Name used to reference the field, especially when writing the .dat file.

pn - Label that will be visualized by the user. It can be translated.

icon - It allows to put an image in .png format in the data tree. The image should be stored inside the images

folder of the problem type.

proc - Permits to define a TCL proc. The code will receive an implicit argument with name 'domNode' that

represents the TDOM node in the calling field context. Square brackets are not necessary in edit_command

field.

help - It displays a pop-up window of help information related to the task the user is performing.

dependencies

<dependencies>

When a field of type 'value' changes its value 'v', the <dependencies> field allows to force a change in other

values.

The parameters are as follows,

node - It is the xpath expression to the node that should be updated.

value - Field <value> allows to define a condition to execute a dependence.

att, atti, i=1,2 - Indicates to which attributes of a node affect a change in one value.

v,vi, i=1,2 - Indicates the new value for atti, i=1,2. It can be normal, hidden or disabled.

default - Default value for the condition. It permits to execute a dependence.

actualize - This only updates a specified field in data tree. Note that only this specified field will be refreshed in

the user interface, and not the whole data tree. It is a boolean value as a 1 or 0 that indicates if it is activated or

deactivated.

actualize_tree - It updates the information in the whole data tree, and automatically refresh data shown in the

user interface. It is a boolean value as a 1 or 0 that indicates if it is activated or deactivated. If the data source is

changed, such as new fields have been added or data values and field have been modified, all the user

interface will reflect those changes. Furthermore, all the TCL procedures defined in the data tree will be called

and the whole data tree will be refreshed. Therefore, this instruction must be carried out only when necessary.

Example: when the user select 'No' in the combo 'show_weight' the item value with name='weight' will be

hidden, and when select 'Yes' is showed.

Note the use of a relative xpath node="../value[@n='weight']" to specify the xml node to be changed by the

dependency:

GiD v17

Copyright © 2024, GiD, CIMNE 32

<group_type pn="normal" default="1"/>

<group_type pn="BC" auto_from_bc="1"/>

groups

<groups>

Initial groups field. It is always an empty field in the .spd file.

groups_types

<groups_types>

Represents the types of groups. It can contain the following fields: <group_type>

The parameters are as follows,

editable - It is a boolean value as a 1 or 0 that indicates if the entry could be changed or not. If it is activated (1)

the entry may not be changed.

group_type

<group_type>

Main configuration field of the group types.

pn - Label that will be visualized by the user. It can be translated.

default - It is a boolean value as a 1 or 0 that indicates the default group type.

auto_from_bc - It is a boolean value as a 1 or 0 that indicates that the group type is a boundary condition (bc).

Example:

units

<units>

Main unit field. It can contain the following fields:

<unit_magnitude>

<value n="show_weight" pn="Show the weight" values="Yes,No"

actualize_tree="1">

<dependencies value='Yes' node="../value[@n='weight']" att1="state"

v1='normal'/>

<dependencies value='No' node="../value[@n='weight']" att1="state"

v1='hidden'/>

</value>

<value n="weight" pn="Weight" v="0.0" unit_magnitude="M" units="kg"

help="Specify the weight that you want to apply"/>

GiD v17

Copyright © 2024, GiD, CIMNE 33

<container n="units" pn="Units" icon="units-16" help="Units definition">

<value n="units_mesh" pn="Geometry units" unit_mesh_definition="

1" icon="units-16"/>

<value n="units_system" pn="Unit system" units_system_definition="

1" icon="units-16" state="hidden">

<dependencies node="//*[@unit_definition or

@unit_mesh_definition='1']" att1="change_units_system" v1="{@v}"/>

</value>

<container n="basic_units" pn="General units" icon="units-16"

state="normal">

<value n="units_length" pn="Length" unit_definition="L"/>

<value n="units_mass" pn="Mass" unit_definition="M"/>

<value n="units_force" pn="Force" unit_definition="F"/>

<value n="units_pressure" pn="Pressure" unit_definition="P"/>

<value n="units_temperature" pn="Temperature" unit_definition="

Temp"/>

<unit_mesh>

<units_system>

unit_mesh

<unit_mesh>

Attributes

n Length unit name to be used for the mesh

units_system

<units_system>

Unit system definition

The field used to choose the unit system is special. It has the attribute units_system_definition="1", it does not

contain any "v" attribute, and it contains a unique dependency related to the unit fields.

n unit name

pn printed name

unit_mesh_definition The field used to choose the mesh unit is also special. It has the attribute

unit_mesh_definition="1", and it does not contain any "v" attribute or dependencies.

unit_definition The fields used to choose the default units in the GUI are also special. They contain the

attribute called unit_definition="magnitude" being magnitude the name 'n' to be used in that field. It is important

to note that these kind of fields does not contain dependencies.

Here's an example of node type "container" in the .spd file, which allows to choose the geometry units and the

general units, as follows,

GiD v17

Copyright © 2024, GiD, CIMNE 34

International and Imperial systems

There are two primary systems used to define units: the international and imperial systems, as seen below. The

international system of units is the modern standardized form of the metric system. It sets standard

measurements and conversions, and is the most commonly and universally accepted system of units. The

imperial system, also known as British Imperial, is the system of units first defined in the British Weights and

Measures Act of 1824, which was later refined and reduced.

Unit system n

Int. system (SI) SI

Imperial system imperial

The fields of type <unit> can contain the attribute called units_system, as follows,

 units_system - There are two systems used to define units, the possible values are:

SI - International system

imperial - Imperial system

unit_magnitude

<unit_magnitude>

It can contain the following fields: <unit>

The parameters are as follows,

n - Name used to reference the field, especially when writing the .dat file.

<value n="units_time" pn="Time" unit_definition="T"/>

</container>

</container>

GiD v17

Copyright © 2024, GiD, CIMNE 35

<value n="ini_temp" pn="Initial temperature" v="20.0" unit_magnitude="

Temp" units="°C"/>

pn - Label that will be visualized by the user. It can be translated.

default - Default unit for a specific magnitude.

SI_base -Unit based in the international system units for a specific magnitude.

active - It is the default unit shown in the user interface, for a specific magnitude.

Defining magnitudes and units

The attributes involved in any field of the .spd file are 'unit_magnitude' and 'units'.

 unit_magnitude: Its value relates to the name 'n' used to reference the unit field. Please see the table below

for a complete list of all the names available.

 units: Its value is the default unit shown in the GUI, which could be changed, if desired.

Some functions are useful for writing data with units defined into the calculation file. For more information about

this issue, see the section called Writing the input file for calculation.

Example:

Note: For instance, it is convenient to change magnitudes like unit_magnitude="F/L^2" by unit_magnitude="P".

The table below gives a summary of the names used for all unit magnitudes available.

pn n Unit by default

Length L m

Mass M kg

Time T s

Temperature Temp K

Frequency Frequency Hz

Force F N

Pressure P Pa

Energy Energy J

Power Power W

Angle Angle rad

Solid_angle Solid_angle sr

Velocity Velocity m/s

GiD v17

Copyright © 2024, GiD, CIMNE 36

Acceleration Acceleration m/s^2

Area Area m^2

Volume Volume m^3

Density Density kg/m^3

Electric current Electric_current A

Amount of substance Amount_of_substance mol

Luminous intensity Luminous_intensity cd

Electric charge Electric_charge C

Electric potential Electric_potential V

Capacitance Capacitance F

Electric resistance Electric_resistance ?

Electric conductance Electric_conductance S

Magnetic flux Magnetic_flux Wb

Magnetic flux density Magnetic_flux_density T

Inductance Inductance H

Delta phi DeltaPhi

Delta temperature DeltaTemp K

Luminous flux Luminous_flux lm

Illuminance Illuminance lx

KinematicViscosity KinematicViscosity m^2/s

Viscosity Viscosity Pa*s

Permeability Permeability m^2

The default magnitudes and conversion factors could be seen at the file scripts\customLib\customLib\units.xml

unit

<unit>

A unit of measurement is a definite magnitude of a physical quantity, defined and adopted by convention or by

law, that is used as a standard for measurement of the same physical quantity. Any other value of the physical

quantity can be expressed as a simple multiple of the unit of measurement. For example, length is a physical

quantity, and meter is a unit of length that represents a definite predetermined length.

GiD v17

Copyright © 2024, GiD, CIMNE 37

The node <units> in the *.spd file can be used to change some defaults or to add specialized units, which in

principle are not supported. The structure and contents of this subtree <units> requires to have the format as

further detailed in this document. The following attributes are available:

n - name

pn - printed name (decorated and translated)

p - Priority of the unit, it is regarded as more important than others units. The possible values for 'p' are 1, 2 and

3, as follows,

1 - It gives maximum priority, and therefore a unit with p="1" is the default unit in the GUI.

2 - A unit with p="2" is always shown in the combobox of below to facilitate the selection of the most used units.

3 - It gives lowest priority, and therefore a unit with p="3" could only be chosen when clicking on 'More units...'

option in the combobox of below, which enables the user to choose the unit from a table.

factor - The conversion factor used to multiply a quantity when converting from one system of units to another.

It is the mathematical tool for converting between units of measurement [1 unit=factor*unit(SI)]. Example:

1mm=10e-3 m.

help - To make easier to the user to identify the unit.

Example of <units> field: Species concentration and reference variable are not supported and therefore, both

magnitudes are defined in the *.spd file, as follows,

GiD v17

Copyright © 2024, GiD, CIMNE 38

<units>

<unit_magnitude n="Reference_variable_unit" pn="Reference variable

unit" default="U" SI_base="U" active="1">

<unit n="U" pn="ReferenceUnit" p="2" factor="1.0"/>

<unit n="ppm" pn="parts-per-million" p="2" factor="1.0e-6" help="

parts-per-million"/>

<unit n="ppb" pn="parts-per-billion" p="2" factor="1.0e-9" help="

parts-per-billion"/>

<unit n="%" pn="per-one-hundred" p="2" factor="0.01" help="per-

one-hundred"/>

<unit n="%0" pn="per-one-thousand" p="2" factor="0.001" help="per-

one-thousand"/>

<unit n="Np" pn="Nepper" p="2" factor="1.0" help="Nepper"/>

</unit_magnitude>

<unit_magnitude n="Species_concentration" pn="Species concentration"

default="C" SI_base="C" active="1">

<unit n="C" pn="ReferenceUnit" p="2" factor="1"/>

<unit n="ppm" pn="parts-per-million" p="2" factor="1.0e-6" help="

parts-per-million"/>

<unit n="ppb" pn="parts-per-billion" p="2" factor="1.0e-9" help="

parts-per-billion"/>

<unit n="%" pn="per-one-hundred" p="2" factor="0.01" help="per-

one-hundred"/>

<unit n="%0" pn="per-one-thousand" p="2" factor="0.001" help="per-

one-thousand"/>

<unit n="mol" pn="mole" p="2" factor="1.0"/>

</unit_magnitude>

</units>

Style

<style>

Optional item, for some GUI options

The parameters are as follows,

show_menubutton_search - 0 or 1: to show or hide the search button on the top of the customLib tree widget

showlines - 0 or 1 : to show or hide the lines of the tree

show_menubutton_about - 0 or 1: to show or hide an about customLib button.

function

<function>

GiD v17

Copyright © 2024, GiD, CIMNE 39

<value n="dens" pn="Density" min_two_pnts="1" help="Density of Steel"

unit_magnitude="M/L^3" units="kg/m^3" function="[density_function]"

function_func="" v="1.0">

<function>

<functionVariable n="interpolator_func" pn="Interpolation function"

variable="x" units="°C">

<value n="point" pn="Point" v="20.0,7830.0"/>

<value n="point" pn="Point" v="600.0,7644.0"/>

</functionVariable>

</function>

</value>

<procs>

<proc n='density_function' args='args'>

<![CDATA[

MyDensityFunction $domNode $args

]]>

</proc>

</procs>

proc MyDensityFunction { domNode args } {

set result [join [list scalar [list interpolator_func x x Temp]] ,]

return $result

}

Main function field, which contains a function variable field called <functionVariable>.

It permits to create or edit a function defined by points for a determined field.

e.g. for a property variable with the temperature.

It can contain the following fields: <functionVariable>

functionVariable

<functionVariable>

It allows to define the default values of a function defined by xy points. The parameters are as follows,

n - Name used to reference the field, especially when writing the .dat file.

pn - Label that will be visualized by the user. It can be translated.

variable - Name of the variable shown in the GUI.

units - Its value is the default unit shown in the GUI, which could be changed, if desired.

Example:

In this example the proc density_function referenced by the 'function' attribute is implemented in the xml .spd file

but it is very simple and only invokes another procedure named MyDensityFunction adding some arguments.

The body of the tcl procedure could be implemented separately in a .tcl file (sourced in the problemtype), this

facilitate its edition and debug.

The proc referenced by the 'function' must return as value something like this:

scalar, interpolator_func x x Temp

GiD v17

Copyright © 2024, GiD, CIMNE 40

<include path="xml/materials.xml"/>

where scalar is a keyword,

interpolator_func is the same name used in <functionVariable n="interpolator_func" ...

x is the same variable name used in <functionVariable ... variable="x" ...

Temp is the magnitude according to the units used in <functionVariable ... units="°C">

The graphical interface will show something like this

and pressing the right button will open a window to edit the xy graph:

include

It's used to join diferent parts of the spd file.

It must contain the following attributes:

 path: relative path, from the problemtype folder

It can contain the following attributes:

 active: Specifies if the part must be added in the final

All attributes will be transfered to the included node, except "n" "active" and "path"

Example:

Annex I: Using functions

The following section is of purely practical nature. It contains examples of the most common functions from the

areas CustomLib deals with.

Example: Using functions based on Interpolated Data

The linear interpolation uses two or more pairs of input data points that approximate a function. To define

functions based on interpolated data, use the function dialog box, which can be opened from the data tree

automatically clicking on the button ? as follows,

GiD v17

Copyright © 2024, GiD, CIMNE 41

<container n="my_load" pn="My load">

<value n="disc_load" pn="Discrete load" min_two_pnts="1"

single_value="1" function="[my_loads_function_time %W]"

function_func="" state="normal" v="1.0">

<function>

<functionVariable n="interpolator_func" pn="Interpolation

function" variable="x" units="s">

<value n="point" pn="Point" v="0.0,0.0"/>

<value n="point" pn="Point" v="10.0,1.0"/>

<value n="point" pn="Point" v="1.0e9,1.0"/>

</functionVariable>

</function>

</value>

</container>

proc my_loads_function_time { domNode } {

set loads [list [list scalar]]

lappend loads [list interpolator_func x x T]

return [join $loads ,]

}

An example of the <value/> node field in the .spd file is the following:

And in a.tcl define the proc

Notice that both <function/> and <functionVariable/> nodes are required to define an interpolation function.

Note: The nodes of type <value n="point"/> can be omitted to start with an empty table of input data points.

GiD v17

Copyright © 2024, GiD, CIMNE 42

It is possible to show different types of graphs, and now is allowed to have multiple series (more than one y

column for the x column)

attribute function_graph_type possible values: xy (default), bar, pie, polar

attribute function_graph_logx boolean to set logarithmic axis x, and function_graph_logy to set logarithmic

axis y (valid for xy graphs only)

attribute function_graph_bar_stacked boolean to show bar graphs with multiple series stacked or not (valid

for bar graphs only)

attribute function_graph_bar_horizontal boolean to show bar graphs horizontal instead default vertical (valid

for bar graphs only)

Example: graph xy with multiple series and logarithmic x and y axis

<container n="POLYFLAM_RABS_90000_UV5" pn="POLYFLAM® RABS 90000 UV5">

<value n="shear_rate" pn="Shear rate curve" min_two_pnts="1"

single_value="1" pn_function="Viscosity_(230ºC),Viscosity_(240ºC),

Viscosity_(250ºC)" unit_magnitude="Viscosity" units="Pa*s" function="

[my_loads_function_time %W]" function_func="" function_graph_type="xy"

function_graph_logx="1" function_graph_logy="1" state="normal" v="1.0">

<function>

<functionVariable n="interpolator_func" pn="Interpolation

function" variable="x" units="1/s">

 <value n="point" pn="Point" v="10,2412.01,1387.9,810.038" />

 <value n="point" pn="Point" v="100,891.705,668.442,485.431" />

 <value n="point" pn="Point" v="500,296.806,244.764,201.39" />

 <value n="point" pn="Point" v="1000,178.143,149.199,125.746"

/>

 <value n="point" pn="Point" v="5000,53.0574,45.0246,38.7688"

/>

 <value n="point" pn="Point" v="10000,31.3575,26.6552,23.0168"

/>

</functionVariable>

</function>

</value>

</container>

GiD v17

Copyright © 2024, GiD, CIMNE 43

<container n="bar_demo" pn="bar demo">

<value n="other_curve" pn="time Velocity curve" min_two_pnts="1"

single_value="1" pn_function="speed,other" unit_magnitude="Velocity"

units=""

function="[my_loads_function_time %W]" function_func=""

function_graph_type="bar" function_graph_bar_horizontal="0"

function_graph_bar_stacked="0" state="normal" v="1.0">

<function>

<functionVariable n="interpolator_func" pn="Interpolation

function" variable="x" units="s">

<value n="point" pn="Point" v="0.0,0.13,0.2" />

<value n="point" pn="Point" v="5.0,0.32,0.15" />

<value n="point" pn="Point" v="8.0,0.22,0.57" />

<value n="point" pn="Point" v="10.0,0.9,1.4" />

</functionVariable>

</function>

</value>

</container>

Example: graph of bars with two series in vertical and not stacked

GiD v17

Copyright © 2024, GiD, CIMNE 44

<container n="polar_demo" pn="polar demo">

<value n="polar_curve" pn="time Velocity curve" min_two_pnts="1"

single_value="1" pn_function="speed" unit_magnitude="Velocity" units=""

function="[my_loads_function_time %W]" function_func=""

function_graph_type="polar" state="normal" v="1.0">

<function>

<functionVariable n="interpolator_func" pn="Interpolation

function" variable="x" units="degree">

<value n="point" pn="Point" v="0.0,0.13" />

<value n="point" pn="Point" v="45.0,0.32" />

<value n="point" pn="Point" v="160.0,0.22" />

<value n="point" pn="Point" v="230.0,0.5" />

<value n="point" pn="Point" v="360.0,0.9" />

</functionVariable>

</function>

</value>

</container>

Example: polar graph

GiD v17

Copyright © 2024, GiD, CIMNE 45

<container n="pie_demo" pn="pie demo">

<value n="rate_curve" pn="time Velocity curve" min_two_pnts="1"

single_value="1" pn_function="speed" unit_magnitude="Velocity" units=""

function="[my_loads_function_time %W]" function_func=""

function_graph_type="pie" state="normal" v="1.0">

<function>

<functionVariable n="interpolator_func" pn="Interpolation

function" variable="x" units="s">

<value n="point" pn="Point" v="slow,0.13" />

<value n="point" pn="Point" v="medium,0.32" />

<value n="point" pn="Point" v="fast,0.22" />

<value n="point" pn="Point" v="very fast,0.9" />

</functionVariable>

</function>

</value>

</container>

Example: pie chart

GiD v17

Copyright © 2024, GiD, CIMNE 46

Example : Using functions based on Interpolated Data, methods for entering data

It is possible to select automatically the method for entering data (Single value, Linear ramp or Equation). For

functions of one variable, you can select between the following interpolation methods by default:

 Single value: The linear interpolation uses two or more pairs of input data points that approximate a function.

 Linear ramp: Calculates two or more 'Linear ramp' pairs of input data points that approximate a function.

 Equation: Calculates two or more pairs of input data points that satisfy a given equation.

Use the function dialog box, which can be opened from the data tree clicking on the button ? as follows,

GiD v17

Copyright © 2024, GiD, CIMNE 47

<value n="Factor" pn="Factor" v="1.0" help="This factor, that can be a

number or a formula, multiplies the vector load" function="

[loads_function Punctual_Load]" function_func="CompassFEM::

function_loads"/>

<proc n="loads_function" args="load_name">

return [chk_loads_function $domNode $load_name]

</proc>

proc function_loads { ftype what n pn frame domNode funcNode \

units_var ov_var } {

switch $ftype {

sinusoidal_load {

return [function_loads_sinusoidal $what $n $pn $frame

$domNode \

$funcNode $units_var $ov_var]

}

custom_editor {

return [function_custom_editor $what $n $pn $frame $domNode

\

$funcNode $units_var $ov_var]

}

}

}

proc chk_loads_function {domNode load_name} {

set loads [list [list scalar]]

lappend loads [list sinusoidal_load t]

return [join $loads ,]

}

proc function_custom_editor { what n pn f domNode funcNode \

units_var ov_var } {

GiD v17

Copyright © 2024, GiD, CIMNE 48

Create your own child window implemented in Tcl/Tk..

}

proc function_loads_sinusoidal { what n pn f domNode funcNode \

units_var ov_var } {

global ProblemTypePriv

switch $what {

create {

set help [= "This is a a sinusoidal load that depends on

the time"]

set f1 [ttk::frame $f.f1]

set idx 0

foreach i [list amplitude circular_frequency phase_angle

initial_time end_time] \

n [list [= "Amplitude (%s)" A] \

[= "Frequency (%s)" f] [= "Phase angle (%s)" \u3a6]

\

($i)

[= "Initial time (%s)" t0] [= "End time (%s)" t1]] \

m [list - Frequency Rotation T T] \

u [list - 1/s rad s s] \

v [list 1.0 1.0 0.0 0.0 0.0] {

ttk::label $f1.l$idx -text $n:

gid_groups_conds::register_popup_help $f1.l$idx $help

if { $m ne "-" } {

set ProblemTypePriv($i) $v

set ProblemTypePriv(${i}_units $u

gid_groups_conds::entry_units $f1.sw$idx \

-unit_magnitude $m \

-value_variable ProblemTypePriv($i) \

-units_variable ProblemTypePriv(${i}_units)

} else {

ttk::entry $f1.sw$idx -textvariable ProblemTypePriv

set ProblemTypePriv($i) $v

}

grid $f1.l$idx $f1.sw$idx -sticky w -padx 2 -pady 2

grid configure $f1.sw$idx -sticky ew

incr idx

}

if { ![info exists ProblemTypePriv(l_sin_img)] } {

set ProblemTypePriv(l_sin_img) [image create photo \

-file [file join $ProblemTypePriv

GiD v17

Copyright © 2024, GiD, CIMNE 49

(problemtypedir) images \

}

sinusoidal_load.gif]]

ttk::label $f1.l -text "f(t)=A\u00b7sin

(2\u00b7\u03C0\u00b7f\u00b7t+\u03a6)" \

-relief solid -padding 3 -width 20 \

-anchor w

grid $f1.l -sticky w -padx 6 -pady 6

label $f.image -image $ProblemTypePriv(l_sin_img) -bd 1 -

relief solid

grid $f1 $f.image -sticky nw -padx 8 -pady 2

grid configure $f.image -sticky new

grid columnconfigure $f 1 -weight 1

grid rowconfigure $f 0 -weight 1

if { $funcNode ne "" } {

set xp {functionVariable[@variable="t" and

@n="sinusoidal_load"]}

set fvarNode [$funcNode selectNodes $xp]

} else { set fvarNode "" }

if { $fvarNode ne "" } {

foreach i [list amplitude circular_frequency

phase_angle initial_time end_time] \

pn [list [= "Amplitude (%s)" A] \

[= "Frequency (%s)" f] [= "Phase angle (%s)"

\u3a6] \

t1]] \

/@units)} $i]

[= "Initial time (%s)" t0] [= "End time (%s)"

m [list - Frequency Rotation T T] {

set xp [format_xpath {string(value[@n=%s]/@v)} $i]

set ProblemTypePriv($i) [$fvarNode selectNodes $xp]

if { $m ne "-" } {

set xp [format_xpath {string(value[@n=%s]

set ProblemTypePriv(${i}_units) \

[gid_groups_conds::units_to_nice_units

[$fvarNode selectNodes $xp]]

}

}

}

return [= "Sinusoidal load"]

}

apply {

set idx 0

GiD v17

Copyright © 2024, GiD, CIMNE 50

set f1 $f.f1

foreach i [list amplitude circular_frequency phase_angle

initial_time end_time] \

pn [list [= "Amplitude (%s)" A] \

[= "Frequency (%s)" f] [= "Phase angle (%s)" \u3a6]

\

{

e $f1.sw$idx }

[= "Initial time (%s)" t0] [= "End time (%s)" t1]] \

m [list - Rotation Rotation T T] {

if { ![string is double -strict $ProblemTypePriv($i)] }

if { $m ne "-" } { set e $f1.sw$idx.e } else { set

tk::TabToWindow $e

error [= "Value %s is not OK" $pn]

}

incr idx

}

set xp {functionVariable[@variable="t"]}

if { [$funcNode selectNodes $xp] eq "" } {

set fvarNode [$funcNode appendChildTag functionVariable]

} else {

set fvarNode [$funcNode selectNodes $xp]

foreach i [$fvarNode childNodes] { $i delete }

load"] \

}

$fvarNode setAttribute n sinusoidal_load pn [= "Sinusoidal

variable "t"

foreach i [list amplitude circular_frequency phase_angle

initial_time end_time] \

pn [list [= "Amplitude (%s)" A] \

[= "Frequency (%s)" f] [= "Phase angle (%s)" \u3a6]

\

[= "Initial time (%s)" t0] [= "End time (%s)" t1]] \

m [list - Frequency Rotation T T] {

set v [$fvarNode appendChildTag value [list attributes()

\

n $i pn $pn v $ProblemTypePriv($i)]]

if { $m ne "-" } {

set newunits [gid_groups_conds::nice_units_to_units

\

$ProblemTypePriv(${i}_units)]

$v setAttribute unit_magnitude $m \

units $newunits

}

}

}

}

}

GiD v17

Copyright © 2024, GiD, CIMNE 51

Example: Editable multiline text for entering mathematical expressions

The following example allows to enter a numerical or math expression, such as a formula, into an editable

multiline text box. CustomLib will display automatically the resulting math expression in the data tree. Moreover,

the user will be able to overwrite this expression with a different formula using Ramdebugger editor. The 'Edit'

button opens Ramdebugger, the graphical debugger for the scripting lenguage Tcl-Tk.

It is possible to create and modify the function inside Ramdebugger editor. The TCL-TK source code is

colorized and supports automatic

The <condition/> node field in the .spd file is as follows,

GiD v17

Copyright © 2024, GiD, CIMNE 52

<condition n="custom_constraints" pn="Custom constraints" ov="point,

line,surface,volume" state="normal" ov_default="surface" ovm="" help="A

constraint defined by using the TCL extension language">

<dependencies node="value[@n='over_what']" att1="v" v1="node"

att2="state" v2="disabled" condition="@ov='point'"/>

<dependencies node="value[@n='over_what']" att1="state" v1="

normal" condition="@ov='line' or @ov='surface' or @ov='volume'"/>

<value n="units" pn="Units set" v="N-m-kg" values="N-m-kg,N-cm-

kg,N-mm-kg"/>

<value n="tcl_code" pn="TCL code" v="" fieldtype="long text"/>

<value n="over_what" pn="Over" v="node" values="node,element"

dict="node,node,element,element" editable="0" help="Condition will be

applied to either over every selected element or every selected node"/>

<edit_command n="edit_custom_data" pn="Edit" proc="

edit_custom_data constraints" edit_type="callback"/>

</condition>

<proc n="edit_custom_data" args="custom_type callback">

custom_data_edit $domNode $dict $custom_type $callback

</proc>

proc custom_data_edit { domNode dict custom_type callback } {

if { ![interp exists ramdebugger] } { interp create ramdebugger }

ramdebugger eval [list set argv [list -noprefs -rgeometry

600x500+300+300 \

-onlytext]]

package require RamDebugger

if { [dict exists $dict tcl_code] } {

set data [string trim [dict get $dict tcl_code]]

} else {

set xp {string(value[@n="tcl_code"]/@v)}

set data [string trim [$domNode selectNodes $xp]]

}

if { $data eq "" } {

set data [format "# %s\n# %s\n" [= "Enter TCL code to

define a load"] \

[= "Use menu 'Custom data' for help"]]

}

interp alias ramdebugger EditEndInRamDebugger "" CompassFEM::

custom_data_edit_update \

$callback

ramdebugger eval [list RamDebugger::OpenFileSaveHandler "*custom

data*" \

$data EditEndInRamDebugger]

set menu ""

GiD v17

Copyright © 2024, GiD, CIMNE 53

set file [file join $::ProblemTypePriv(problemtypedir) scripts

custom_bc_examples.txt]

set fin [open $file r]

set data [read $fin]

close $fin

set elms ""

set rex {\s*#\s*type:\s*(\S.*\S)\s+name:\s*(\S.*\S)\s*$}

foreach "idxsL idxsType idxsName" [regexp -inline -all -line -

indices $rex $data] {

if { $elms ne "" } {

lset elms end end [expr {[lindex $idxsL 0]-1}]

}

set type [eval [list string range $data] $idxsType]

set name [eval [list string range $data] $idxsName]

lappend elms [list $type $name [lindex $idxsL 0] ""]

}

if { $elms ne "" } {

lset elms end end [expr {[string length $data]-1}]

}

set subMenus ""

foreach i $elms {

foreach "type name idx1 idx2" $i break

lappend subMenus [list command "$name ($type)" {} \

[= "View example '%s' (%s)" $name $type] "" \

-command [list open_new_window_show $idx1 $idx2]]

}

lappend subMenus [list separator]

set idx2 [expr {[string length $data]-1}]

lappend subMenus [list command [= "All examples"] {} \

[= "View all examples"] "" \

-command [list open_new_window_show 0 $idx2]]

lappend menu [list cascad [= Examples] {} examples 0 $subMenus]

set cmd {

set ip [RamDebugger::OpenFileInNewWindow -ask_for_file 0]

set fin [open %FILE r]

set data [read $fin]

close $fin

set d [string range $data $idx1 $idx2]

$ip eval [list $::RamDebugger::text insert insert $d]

$ip eval [list RamDebugger::MarkAsNotModified]

}

set cmd [string map [list %FILE [list $file]] $cmd]

ramdebugger eval [list proc open_new_window_show [list idx1 idx2]

$cmd]

lappend menu [list separator]

GiD v17

Copyright © 2024, GiD, CIMNE 54

Example: Create your own custom editor window for entering mathematical expressions

The user can create any number of custom windows in the user interface. A child window is opened

automatically to display information to the user and/or get information from the user. This is a great way to add

custom windows for your own purposes.

The Function Editor window can be opened by locating in the data tree the field to modify, and choosing the edit

button (e.g. ?).

foreach "n nargs" [list coords 2 conec 1 nnode 0 elem_num 0

elem_normal 1 \

epsilon 0 facLoad 0] {

set name [= "Insert command '%s'" $n]

set cmd {

set t $::RamDebugger::text

$t insert insert [list %N%]

$t insert insert "("

$t insert insert [string repeat , %NARGS%]

$t insert insert ")"

$t mark set insert "insert-[expr {%NARGS%+1}]c"

}

set cmd [string map [list %N% $n %NARGS% $nargs] \

$cmd]

lappend menu [list command $name "" "" "" -command $cmd]

}

lappend menu [list separator]

foreach "n nfull" [list \

add_to_load_vector "add_to_load_vector ?-substitute? ?-

local? nodenum loadvector" \

addload "addload ?-local?

pressure|triangular_pressure|punctual_load args"] {

set name [= "Insert command '%s'" $n]

set cmd {

$::RamDebugger::text insert insert [list %NFULL%]

}

set cmd [string map [list %NFULL% $nfull] $cmd]

lappend menu [list command $name "" "" "" -command $cmd]

}

switch $custom_type {

constraints { set title [= "Constraints data"] }

properties { set title [= "Properties data"] }

loads { set title [= "Loads data"] }

default { set title [= "Custom data"] }

}

ramdebugger eval [list RamDebugger::AddCustomFileTypeMenu $title

$menu]

}

GiD v17

Copyright © 2024, GiD, CIMNE 55

This will open the Function Editor window and load the current expression into it, which can be empty.

The <value/> node field in the .spd file is as follows,

Annex II: Using matrices

CustomLib also allows to enter square matrices of order n automatically. The Matrix Editor window is opened by

locating in the data tree the field to modify, and choosing the edit button (e.g. [x]) as follows,

This will open the Matrix Editor window and load the current expression into it, which can be empty.

<value n="Density" pn="Density" v="" unit_magnitude="M/L^3" units="kg

/m^3" help="Density of the fluid" function="[loads_function editor]"

pn_function="Density" function_func="function_loads"/>

proc function_loads { ftype what n pn frame domNode funcNode \

units_var ov_var } {

switch $ftype {

editor {

return [function_editor $what $n $pn $frame $domNode \

$funcNode $units_var $ov_var]

}

}

}

proc function_editor { what n pn f domNode funcNode \

units_var ov_var } {

Create your own child window implemented in Tcl/Tk.

}

<proc n="loads_function" args="load_name">

return [chk_loads_function $domNode $load_name]

</proc>

proc chk_loads_function { domNode load_name } {

set loads [list [list scalar]]

if { [lsearch "editor" $load_name] != -1 } {

lappend loads [list editor ""]

return [join $loads ,]

}

return [join $loads ,]

}

GiD v17

Copyright © 2024, GiD, CIMNE 56

<value n="nu" pn="nu" function="matrix_func,scalar" dimension_function="

3" state="normal" symmetric_function="0" has_diag="0"

components_function="x,y,z" v="0.3" function_func="loads_function"

help="Poisson coefficient"/>

<value n="nu_s" pn="nu" function="matrix_func,scalar"

dimension_function="3" state="normal" symmetric_function="1" has_diag="

1" components_function="a,b,c" v="0.3" help="Poisson coefficient"/>

The <value/> node field in the .spd file is the following:

The <value/> node field in the .spd file is the following:

The parameters are as follows,

 dimension_function: Determine the dimensions of the given square matrix.

 symmetric_function: It is a boolean value as a 1 or 0. It allows to indicate that it is given only the upper

triangular part of a symmetric matrix.

GiD v17

Copyright © 2024, GiD, CIMNE 57

<proc n="loads_function" args="">

return [cmas2d_CustomLIB::chk_loads_function $domNode]

</proc>

proc cmas2d_CustomLIB::chk_loads_function { domNode } {

set loads [list [list scalar]]

lappend loads [list interpolator_func x x T]

return [join $loads ,]

}

set document [$::gid_groups_conds::doc documentElement]

set xpath {/cmas2d_customlib_data/condition[@n='Point_Weight']/group

[@n='Point Weight Auto1']/value[@n='Weight']}

components_function: List of numbers or names. The natural way to refer to rows and columns in a matrix is

via the row and column numbers. However, the user can also give names to these entities.

has_diag: It is a boolean value as a 1 or 0, that allows to indicate if it is a diagonal matrix.

Access to tree data information

This document shows an example about the access to the data stored in the customlib tree. We are using the

cmas2d_customlib tree as example.

The customlib tree is stored in a xml document. To manage an xml object, we use the tdom functions, available

in https://docs.activestate.com/activetcl/8.6/tcl/tdom

To get the value of the weight applied to the group Point Weight Auto1, we need to define the xpath to the

value, and ask it to the document.

https://docs.activestate.com/activetcl/8.6/tcl/tdom

GiD v17

Copyright © 2024, GiD, CIMNE 58

set xml_node [$document selectNodes $xpath]

set value [get_domnode_attribute $xml_node v]

set document [$::gid_groups_conds::doc documentElement]

set xpath {/cmas2d_customlib_data/condition[@n='Point_Weight']/group}

set group_ids []

foreach group_node [$document selectNodes $xpath] {

set group_id [get_domnode_attribute $group_node n]

lappend group_ids $group_id

}

W [[$::gid_groups_conds::doc documentElement] asXML]

To get all the groups assigned to that condition:

Note: To see the whole xml document, execute

Xpath

XPath short description

(see https://www.w3schools.com/xml/xpath_intro.asp)

 Selecting XML nodes

XPath uses path expressions to select nodes in an XML document. The node is selected by following a path or

steps. The most useful path expressions are listed below:

Expression Description

nodename Selects all nodes with the name "nodename"

/ Selects from the root node

// Selects nodes in the document from the current node that match the selection no matter where

they are

. Selects the current node

.. Selects the parent of the current node

@ Selects attributes

 Predicates

https://www.w3schools.com/xml/xpath_intro.asp

GiD v17

Copyright © 2024, GiD, CIMNE 59

Predicates are used to find a specific node or a node that contains a specific value. Predicates are always

embedded in square brackets.

In the table below we have listed some path expressions with predicates and the result of the expressions:

/bookstore

/book[1]

Selects the first book element that is the child of the bookstore element.

Note: In IE 5,6,7,8,9 first node is[0], but according to W3C, it is [1]. To solve this problem in

IE, set the SelectionLanguage to XPath:In JavaScript: xml.setProperty

("SelectionLanguage","XPath");

/bookstore

/book[last()]

Selects the last book element that is the child of the bookstore element

/bookstore

/book[last()-1]

Selects the last but one book element that is the child of the bookstore element

/bookstore

/book

[position()<3]

Selects the first two book elements that are children of the bookstore element

//title[@lang] Selects all the title elements that have an attribute named lang

//title

[@lang='en']

Selects all the title elements that have a "lang" attribute with a value of "en"

/bookstore

/book

[price>35.00]

Selects all the book elements of the bookstore element that have a price element with a

value greater than 35.00

/bookstore

/book

[price>35.00]

/title

Selects all the title elements of the book elements of the bookstore element that have a

price element with a value greater than 35.00

 Selecting Unknown Nodes

XPath wildcards can be used to select unknown XML nodes.

* Matches any element node

@* Matches any attribute node

node() Matches any node of any kind

In the table below we have listed some path expressions and the result of the expressions:

/bookstore/* Selects all the child element nodes of the bookstore element

//* Selects all elements in the document

//title[@*] Selects all title elements which have at least one attribute of any kind

GiD v17

Copyright © 2024, GiD, CIMNE 60

 Selecting Several Paths

By using the | operator in an XPath expression you can select several paths.

In the table below we have listed some path expressions and the result of the expressions:

//book/title | book

/price

Selects all the title AND price elements of all book elements

//title | //price Selects all the title AND price elements in the document

/bookstore/book

/title | //price

Selects all the title elements of the book element of the bookstore element AND all the

price elements in the document

 XPath Operators

Below is a list of the operators that can be used in XPath expressions:

| Computes two node-sets //book | //cd

+ Addition 6 + 4

- Subtraction 6 - 4

* Multiplication 6 * 4

div Division 8 div 4

= Equal price=9.80

!= Not equal price!=9.80

< Less than price<9.80

<= Less than or equal to price<=9.80

> Greater than price>9.80

>= Greater than or equal to price>=9.80

or or price=9.80 or price=9.70

and and price>9.00 and price<9.90

mod Modulus (division remainder) 5 mod 2

Main procedures

The main procedures available to be used in the TCL files, are listed below.

 gid_groups_conds::actualize_conditions_window

This procedure updates the information of the whole data tree, and automatically refresh data shown in the user

interface. If the data source is changed, such as new fields have been added or data values and field have been

GiD v17

Copyright © 2024, GiD, CIMNE 61

modified, all the user interface will reflect those changes. Furthermore, all the TCL procedures defined in the

data tree will be called and the whole data tree will be refreshed. Note that this instruction must be carried out

only when necessary. It has no arguments.

 gid_groups_conds::begin_problemtype spd_file defaults_file ""

This procedure allows to load the problem type and should be defined in the InitGIDProject procedure. The

arguments are the following:

spd_file - The directory of the main configuration file (.spd).

defaults_file - The directory of the preferences file. If the directory of the preferences file does not already exist,

it is created.

 gid_groups_conds::SetProgramName program_name

This procedure stores the program name in the preferences file and should be defined in the InitGIDProject

procedure. The argument is the following:

program_name - Name of the program.

 gid_groups_conds::end_problemtype defaults_file

This procedure will be called when the project is about to be closed, in the EndGIDProject procedure. It receives

as argument:

defaults_file - The directory of the preferences file. If the directory of the preferences file does not already exist,

it is created.

 gid_groups_conds::give_data_version

This function returns the version number of the problem type.

 gid_groups_conds::save_spd_file spd_file

This procedure saves the .spd file and should be defined in the SaveGIDProject procedure. Therefore, it will be

called when the currently opened file is saved to disk. It receives as argument:

spd_file: path of the file being saved

 gid_groups_conds::import_export_materials widget xpath

This procedure allows to open the 'Import/export materials' window. It receives as arguments:

widget - Parent widget.

xpath - It is thexpath expression to the field 'container' of materials.

Description of the local axes

Local axes definition

CustomLib lets the user to define new coordinates reference systems. Local axes can be assigned to entities

using the Local axes window.

Local coordinates systems of lines are defined such that the local x-axis will correspond to the axial direction of

the line. Both other axes will be defined perpendicular to this local x-axis.

Local coordinate systems of surfaces are defined such that the local z-axis is defined perpendicular to the

surface and both x- and y- axes are defined perpendicular to each other in the plane of the surface.

Local coordinates can be defined by selecting the option called Assign Automatic in the Local axes window.

Selecting the option Assign Automatic alt will define alternative local coordinate systems which are normally

rotated 90 degrees around the third axis compared to the first ones.

The procedure gid_groups_conds::local_axes_window creates the Local axes window automatically, which

GiD v17

Copyright © 2024, GiD, CIMNE 62

allows to define the local axes to be used.

Local coordinates will be shown by selecting the Draw button.

It should be emphasized that it is possible to list the local axes clicking on the 'List' button. This way a child

window displays both the Euler angles and the transformation matrix.

Generic local axes window allows to create new local axes in two ways:

 Three points XZ: Enter three points that corresponds to the origin, the X-direction and the Z-direction. The

origin and the last introduced point define the Z-axis, whereas the second point indicates the side of the x-z

plane where the point lies.

X and angle: Enter two points and one angle. The first point is the center, the second point indicates the x-

axis and the angle indicates the position of the Y and Z axes. In the graphical window it is possible to set this

angle by moving the mouse on the screen. It also indicates where the origin of the angle is. The angle can

be entered either by clicking the mouse or by entering the exact value in degrees.

GiD v17

Copyright © 2024, GiD, CIMNE 63

User defined local axes menu

CustomLib also offers the opportunity to customize the pull-down menu when creating a problem type in the

following way:

User can create different named local axes systems and with the different methods that can be chosen there.

The names of the defined local axes will be added to the menu, where local axes are chosen.

The code to make this change in the menu would be as follows,

GidAddUserDataOptionsMenu [= "Local axes"] "gid_groups_conds::local_axes_menu %W" $ipos

The 'ipos' is the index where the new menu will be inserted.

For more details about managing menus reference is made to the 'Managing menus' chapter in the Gid manual.

It is important to note that all user-defined systems are automatically calculated in the problem type. After

generation of the mesh, the local coordinates of entities will be automatically defined at each entity element of

the entities local coordinates have been defined on.

Local axes assigned on lines

The model has been created related to a global axis system XYZ that is unique for the entire problem. The main

property of this system is that the local X’ axe must have the same direction than the line.

GiD v17

Copyright © 2024, GiD, CIMNE 64

The ways for defining local axes systems are:

-Default. The program assigns a different local axes system to every line with the following criteria:

X’ axe has the direction of the line. If X’ axe has the same direction than global Z axe, Y’ axe has the same

direction than global X. If not, Y’ axe is calculated so as to be horizontal (orthogonal to X’ and Z). Z’ axe is the

cross product of X’ axe and Y’ axe. It will try to point to the same sense than global Z (dot product of Z and Z’

axes will be positive or zero). The intuitive idea is that vertical lines have the Y’ axe in the direction of global X.

All the other lines have the Y’ axe horizontal and with the Z’ axe pointing up.

-Automatic: Similar to the previous one but the local axes system is assigned automatically to the line by GiD.

The final orientation can be checked with the Draw Local Axes option in the GiD Conditions window.

-Automatic alt: Similar to the previous one but an alternative proposal of local axes is given. Typically, user

should assign Automatic local axes and check them, after assigning, with the Draw local axes option. If a

different local axes system is desired, normally rotated 90 degrees from the first one, then it is only necessary to

assign again the same condition to the entities with the Automatic alt option selected.

Local axes assigned on surfaces

The model is created related to a global axis system XYZ that is unique for the entire problem. The main

property of this local axis system is that the local Z’ axe must have the same direction than the normal of the

element.

The ways for defining local axes systems are:

GiD v17

Copyright © 2024, GiD, CIMNE 65

<container n="local_axes" pn="Local axes">

<container n="local_axes_window" pn="Local axes definition">

<edit_command n="local_axes_win" proc="gid_groups_conds::

local_axes_window" edit_type="exclusive"/>

</container>

</container>

-Default: The program assigns a different local axes system to the surface with the following criteria:

Be N the unitary normal of the surface element, and U the vector (0,1,0) and V the vector (0,0,1). Then:

Z’ axe has the direction and sense of N.

If Nx<1/64 and Ny<1/64, then X’ axe will be in the direction of the cross product of U and N (UxN).

 If not, X’ axe will be in the direction of the cross product of V and N (VxN).

 Y’ axe will be the cross product of Z’ axe and X’ axe.

Intuitively, this local axis system is calculated so as if element is approximately contained in the plane XY, local

X’ axe will point towards global X axe. If not, this X’ axe is obtained as orthogonal to global Z axe and local Z’

axe.

-Automatic: Similar to the previous one but the local axes system is assigned automatically to the surface. The

final orientation can be checked with the Draw Local Axes option in the GiD Conditions window.

-Automatic alt: Similar to the previous one but an alternative proposal of local axes is given. Typically, user

should assign Automatic local axes and check them, after assigning, with the Draw local axes option. If a

different local axes system is desired, normally rotated 90 degrees from the first one, then it is only necessary to

assign again the same condition to the entities with the Automatic alt option selected.

Example no. 1

This is an example of the <container/> node field in the .spd file to call the Local axes window from the data tree:

Example no. 2

Here is an example of application for opening the Local axes window from a conditions window, as follows:

The <condition> node field in the .spd file is:

GiD v17

Copyright © 2024, GiD, CIMNE 66

<condition n="pressure_load" pn="Pressure load" ov="surface" ovm="

element">

<value n="load_type" pn="Load type" v="global" values="global,local"

local_axes="disabled" editable="0" help="The load can be applied in

global axes, or in the Local Axes defined for the entity">

<dependencies node="." att1="local_axes" v1="normal" value="

local"/>

<dependencies node="." att1="local_axes" v1="disabled"

not_value="local"/>

</value>

</condition>

<condition n="pressure_load" pn="Pressure load" ov="surface" ovm="

element">

<value n="load_type" pn="Load type" v="global" values="global,local"

local_axes="disabled" editable="0" help="The load can be applied in

global axes, or in the Local Axes defined for the entity">

<dependencies node="." att1="local_axes" v1="normal" value="

The local_axes attribute specifies one of the three states for the button: normal, disabled or hidden.

Example no. 3

This is an example of Local axes check button definition inside a window of the data tree. If the check button is

activated, then the Local axes window can be opened pressing the button at the right:

The <condition> node field in the .spd file is the following:

Example no. 4

Here is an example of Local axes definition, inside for instance, a conditions window of the data tree.

The non-editable combobox In the combobox options The <condition/> node field in the .spd file could be the

following:

<condition n="local_axes" pn="Local axes condition" ov="surface"

local_axes="normal" ovm="element"/>

GiD v17

Copyright © 2024, GiD, CIMNE 67

<condition n="local_axes_directions" pn="Local axes directions" ov1="

surface" ov2="line" ov1p="Local axes surfaces" ov2p="Tangent lines"

ovm1="element" ovm2="none" help="Select surfaces in order to define its

local axes tangents based in selected lines" />

Example no. 5

The following is an example for creating a specific window for assigning local axes on surfaces in the data tree.

The user selects a group of lines and axe X' will be tangent to the lines:

The item 'Local axes definition' in the data tree opens the following window:

The <condition> node field in the .spd file is as follows:

Future developments

In the future it will be available a new Local axes window, totally integrated in the data tree, that will allow to

define groups composed by local axes.

There will be different styles of local axes definitions:

 Automatic: The program automatically generates one local axes compatible with the geometry.

local"/>

<dependencies node="." att1="local_axes" v1="disabled"

not_value="local"/>

</value>

</condition>

GiD v17

Copyright © 2024, GiD, CIMNE 68

Note: If swap axes check button is selected, axes X' and Y' are swapped.

 Tangent lines: User selects a group of lines and axe X' will be tangent to these lines:

User defined: User defines the three local axes X', Y' and Z':

GiD v17

Copyright © 2024, GiD, CIMNE 69

customlib::WriteString "Input Data file for Frame3DD - 3D structural

frame analysis ([gid_groups_conds::give_active_unit F],

[gid_groups_conds::give_active_unit L],[gid_groups_conds::

give_active_unit M])"

customlib::WriteString ""

customlib::WriteString "[GiD_Info Mesh NumNodes] # number of nodes"

customlib::WriteString "#.node x y z r"

customlib::WriteString "# [gid_groups_conds::give_active_unit L]

[gid_groups_conds::give_active_unit L] [gid_groups_conds::

give_active_unit L] [gid_groups_conds::give_active_unit L]"

Writing the input file for calculation

The command called GiD_WriteCalculationFile facilitate the creation of the output calculation file.

See its syntax at WriteCalculationFile

Cheatsheet of writing functions

This functions are based on the implementation of a problemtype for the Frame3DD solver, but can be useful to

anyone.

Basic and advanced tcl commands for writing the input file - example

 How to write a string.

See how we print the units, we are asking GiD for the current active units for the different magnitudes: F for

Force, L for Length, M for Mass

 Nodes in the mesh

See how we get the number of nodes of the whole mesh. Also notice the way we are passing the writing format

for the coordinates.

http://frame3dd.sourceforge.net/

GiD v17

Copyright © 2024, GiD, CIMNE 70

customlib::WriteString ""

customlib::WriteCoordinates "%5d %14.5e %14.5e %14.5e 0.0\n"

set condition_name "frameData"

set condition_formats [list {"%1d" "element" "id"} {"%13.5e" "property"

"Ax"} {"%13.5e" "property" "Asy"} ... {"%13.5e" "material" "Density"}]

set formats [customlib::GetElementsFormats $condition_name

$condition_formats]

set number_of_elements [GiD_WriteCalculationFile elements -count -

elemtype Linear $formats]

customlib::WriteConnectivities $condition_name $formats "" active

set constraints_list [list "constraints"]

set number_of_constraints [customlib::GetNumberOfNodes

$constraints_list]

set document [$::gid_groups_conds::doc documentElement]

set xpath "/frame3dd_data/container\[@n = 'extraOptions' \]/value\[@n

= 'shear_deformation' \]"

set xml_node [$document selectNodes $xpath]

set shear_deformation [get_domnode_attribute $xml_node v]

customlib::WriteString "$shear_deformation # 1=Do, 0=Don't include

shear deformation effects"

set condition_name "line_Uniform_load"

set condition_formats [list {"%1d" "element" "id"} {"%13.5e"

"property" "Load_x"} {"%13.5e" "property" "Load_y"} {"%13.5e"

"property" "Load_z"}]

set formats [customlib::GetElementsFormats $condition_name

Elements assigned to the condition that assigns a material

 Constraints

This is the way we get the number of nodes assigned to a condition called 'constraints' in the spd.

 Basic data

This is the way we access to the data in the tree. Notice that we are building what we call xpath, that is a kind of

path in the spd, from the root to the item we want.

Then we get the xml node from the document using selectNodes, and finally we get the current value with

get_domnode_attribute

 Single load case

This is the way we get the number of elements assigned to a condition, and then print the element id and the

properties assigned to it.

set condition_name "line_Uniform_load"

GiD v17

Copyright © 2024, GiD, CIMNE 71

 Several load cases

For the several load case, we will need to iterate over the xml nodes corresponding to the blockdatas that define

each load case.

For each load case, we need to print all the loads information, so we need to know if a load has any group

assigned.

If so, we'll need to know how many elements are involved, and print them with the properties of the load.

set xpath "/frame3dd_data/container\[@n = 'staticCases' \]/blockdata"

set xml_nodes [$document selectNodes $xpath]

foreach load_case $xml_nodes {

set xpath "./condition\[@n = 'uniformLoad' \]/group"

set groups [$load_case selectNodes $xpath]

set number_of_elements 0

set formats_dict [dict create]

foreach group $groups {

set group_name [get_domnode_attribute $group n]

set Ux_node [$group selectNodes "./value\[@n = 'Ux'\]"]

set Ux_value [get_domnode_attribute $Ux_node v]

set Uy_node [$group selectNodes "./value\[@n = 'Uy'\]"]

set Uy_value [get_domnode_attribute $Uy_node v]

set Uz_node [$group selectNodes "./value\[@n = 'Uz'\]"]

set Uz_value [get_domnode_attribute $Uz_node v]

set format "%5d $Ux_value $Uy_value $Uz_value"

set formats_dict [dict merge $formats_dict [dict create

$group_name $format]]

}

set number_of_elements [GiD_WriteCalculationFile elements -count -

elemtype Linear $formats_dict]

if {$number_of_elements > 0} {

GiD_WriteCalculationFile elements -elemtype Linear $formats_dict

}

}

Alternatives

In this section, we will write the coordinates, connectivites, and conditions assuming that the input can be

different, such as the one in Matfem . In some codes, like matfem, the input file into the solver is not written in a

text file, but in a "code like file". The coordinates section in the matfem solver is a matlab array, with a single

comma splitting x and y (x, y) and a semicolon splitting a node from another (x1, y1; x2, y2; ...)

 Write coordinates:

Example:

$condition_formats]

set number_of_elements [GiD_WriteCalculationFile elements -count -

elemtype Linear $formats]

customlib::WriteConnectivities $condition_name $formats "" active

http://www.cimne.com/mat-fem/

GiD v17

Copyright © 2024, GiD, CIMNE 72

%

% Coordinates

%

global coordinates

coordinates = [

0.00 , 0.00;

0.50 , 0.00;

2.50 , 1.00];

customlib::WriteString "%"

customlib::WriteString "% Coordinates"

customlib::WriteString "%"

customlib::WriteString "global coordinates"

set nodes [GiD_Mesh list node]

customlib::WriteString "coordinates = \["

for {set i 0} {$i < [llength $nodes]} {incr i} {

set node [lindex $nodes $i]

lassign [GiD_Mesh get node $node coordinates] x y z

if {$i < [expr [llength $nodes] -1] } {set end ";"} {set end

""}

customlib::WriteString "$x , $y $end"

}

customlib::WriteString "\] ; "

%

% Elements

%

global elements

customlib::WriteString "%"

customlib::WriteString "% Elements"

customlib::WriteString "%"

Code:

Write elements:

Example:

Code:

elements = [

1, 2, 7 ;

2, 3, 8 ;

18, 17, 12];

GiD v17

Copyright © 2024, GiD, CIMNE 73

customlib::WriteString "global elements"

set elements_t [GiD_Mesh list -element_type Triangle element]

set elements_q [GiD_Mesh list -element_type Quadrilateral element]

customlib::WriteString "elements = \["

for {set i 0} {$i < [llength $elements_t] } {incr i} {

set element [lindex $elements_t $i]

lassign [GiD_Mesh get element $element connectivities] c1 c2

c3

if {$i < [expr [llength $elements_t] -1] } {set end ";"} {set

end ""}

customlib::WriteString "$c1 , $c2 , $c3 $end"

}

for {set i 0} {$i < [llength $elements_q] } {incr i} {

set element [lindex $elements_q $i]

lassign [GiD_Mesh get element $element connectivities] c1 c2

c3 c4

if {$i < [expr [llength $elements_q] -1] } {set end ";"}

{set end ""}

customlib::WriteString "$c1 , $c2 , $c3 , $c4 $end"

}

customlib::WriteString "\] ; "

%

% Point loads

%

pointload = [

6, 2, -1.0 ;

12, 2, -1.0 ;

18, 2, -1.0];

<condition n="PuntualLoads" pn="Load" ov="point" ovm="node" icon="

moad">

<value n="x-force" pn="Force X" v="0.0" units="N" unit_magnitude="

F" />

<value n="y-force" pn="Force Y" v="0.0" units="N" unit_magnitude="

F" />

</condition>

Conditions

Example:

Code:

spd

tcl

GiD v17

Copyright © 2024, GiD, CIMNE 74

Point load

set root [customlib::GetBaseRoot]

customlib::WriteString ""

customlib::WriteString "%"

customlib::WriteString "% Point loads"

customlib::WriteString "%"

customlib::WriteString "pointload = \["

set displacement_fix_nodes [$root selectNodes "*/condition\

[@n='PuntualLoads'\]/group"]

foreach node $displacement_fix_nodes {

set group [$node @n]

set val_x [get_domnode_attribute [$node selectNodes "./value\

[@n='x-force'\]"] v]

set val_y [get_domnode_attribute [$node selectNodes "./value\

[@n='y-force'\]"] v]

set fix_x [expr $val_x == 0.0 ? "false" : "true"]

set fix_y [expr $val_y == 0.0 ? "false" : "true"]

set nodes [GiD_EntitiesGroups get $group nodes]

set num_nodes [objarray length $nodes]

for {set i 0} {$i < $num_nodes} {incr i} {

set node_id [objarray get $nodes $i]

if {$i < [expr $num_nodes -1] } {set end ";"} {set end ""}

if {$fix_x eq "true" && $fix_y eq "true"} {set end ";" }

if {$fix_x eq "true"} { customlib::WriteString "$node_id ,

1 , $val_x $end" }

if {$i < [expr $num_nodes -1] } {set end ";"} {set end ""}

if {$fix_y eq "true"} { customlib::WriteString "$node_id ,

2 , $val_y $end" }

}

}

customlib::WriteString "\] ; "

Units conversion

Auxiliary procedures to convert between different unit types

There are a couple of functions that are essential when writing the input file for the calculation. These functions

permit the treatment of the units, and facilitates the conversion from one measurement to another. They are the

following:

 gid_groups_conds::give_mesh_unit

This function provides the mesh unit.

 gid_groups_conds::set_mesh_unit unit

This function imposes a mesh unit, where the argument is as follows:

unit - A text string, denoting the unit that you want to apply as mesh unit.

 gid_groups_conds::convert_value_to nodeObject to_unit

GiD v17

Copyright © 2024, GiD, CIMNE 75

This function converts the value of a nodeObject from the current unit for the original number to another unit,

where the arguments are as follows:

nodeObject - DOM node object chosen.

to_unit - A text string, denoting the unit that you want to convert the original number to.

 gid_groups_conds::convert_value_to_active nodeObject

This function converts the value of a nodeObject from the current unit type to the general active unit selected in

the GUI. The argument is as follows:

nodeObject - DOM node object chosen.

 gid_groups_conds::convert_unit_value magnitude value unit_from to_unit

This function converts a number from one unit type to another unit type, for the same magnitude. It receives as

arguments:

magnitude - Unit definition, it is the name 'n' of the physical quantity (eg. "L" for Length)

value - The number to be converted.

unit_from - A text string, denoting the unit for the original number.

to_unit - A text string, denoting the unit that you want to convert the original number to.

 gid_groups_conds::convert_value_to_printable_unit nodeObject

This function returns a text string, denoting the current unit of the node. It receives as argument:

nodeObject - DOM node object chosen.

 gid_groups_conds::give_unit_factor magnitude unit

This function returns the conversion factor for the unit given. The arguments are as follows:

magnitude - Unit definition, it is the name 'n' of the physical quantity (eg. "L" for Length)

unit - A text string, denoting the unit chosen to obtain the conversion factor.

 gid_groups_conds::convert_v_to_default value magnitude unit_from

This function converts a number from one unit type to the unit type by default, for the same magnitude. It

receives as arguments:

value - The number to be converted.

magnitude - Unit definition, it is the name 'n' of the physical quantity (eg. "L" for Length)

unit_from - A text string, denoting the unit for the original number.

 gid_groups_conds::give_active_units_system

This function returns a string list, where the first item is the units system.

 gid_groups_conds::give_active_unit magnitude

This function returns the active unit for a given magnitude. It receives as argument:

magnitude - Unit definition, it is the name 'n' of the physical quantity (eg. "L" for Length)

User preferences

User preferences of the problemtype will be automatically saved/read to/from disk in a xml file named

.$problem_type$version.ini, located in the same user folder as the GiD preferences.

To set/get user preferences variables these procedures must be used.

 gid_groups_conds::get_preference <name> <default_value>

GiD v17

Copyright © 2024, GiD, CIMNE 76

set level [gid_groups_conds::get_preference verbosity_level 0]

gid_groups_conds::set_preference verbosity_level 2

This function returns the value of a preference, or the default value if the preference does not already exist. It

receives as arguments:

name - Name of the preference

value - Default value

 gid_groups_conds::set_preference <name> <value>

This function imposes the value of a preference. It receives as arguments:

name - Name of the preference

value - Default value

Example: get or set a user variable named 'verbosity_level', with default value=0

Transform file

Usually a problemtype is evolving along the time, the name and version is declared in the <problemtype>.xml file

The number of the version must be increased in each released version.

A model using a customLib-like problemtype will store the version in the .spd file

When reading a model with a different version will try to invoke some transform procedures, to try to update the

old problemtype data to the current definition.

Sometimes is not possible to know automatically how to assign and old name to a new name of data, to handle

this case is possible to create a <problemtype>.transform file that drives this map.

The syntax of the .transform are simple Tcl list, with <KEY> <SUBKEY> <values> like this

CONDITION RENAME {<old_condition> <current_condition>}

CONDITION RENAME_QUESTION {<old_condition> <old_question> <current_question>}

BLOCKDATA RENAME_QUESTION {<old_blockdata_n> <old_value_n> <current_vallue_n>}

e.g. consider a cmas2d_customlib version 0.1 with this kind of .spd file

<cmas2d_customlib_data version="0.1">

...

<condition n="Point_Mass" pn="Point Mass" ov="point" ovm="node" icon="darkorange-weight-18"

groups_icon="yelowish-group" help="Concentrated mass" tree_state="open">

<value n="Mass" pn="Mass" v="0.0" unit_magnitude="M" units="kg" help="Specify the weight that you want to

apply" state=""/>

....

<condition n="Plates" pn="Plates" ov="surface" ovm="element" ov_element_types="triangle" icon="darkorange-

shellfish-18" groups_icon="yelowish-group" help="Select your material and the surfaces related to it"

tree_state="open">

...

GiD v17

Copyright © 2024, GiD, CIMNE 77

#map changes from v 1.0 to 2.0

CONDITION RENAME {Point_Mass Point_Weight}

CONDITION RENAME {Plates Shells}

CONDITION RENAME_QUESTION {Point_Mass Mass Weight}

BLOCKDATA RENAME_QUESTION {material specific_weight Density}

<blockdata n="material" name="Air" sequence="1" editable_name="unique" icon="darkorange-wind-sign" help="

Material definition" morebutton="0" tree_state="active,open,selected">

<value n="specific_weight" pn="Specific weight" v="9.87654321" help="Superficial density assuming a

thickness of 1 meter" unit_magnitude="M/L^2" units="kg/m^2" tree_state="close" state=""/>

</blockdata>

<blockdata n="material" name="Steel" sequence="1" editable_name="unique" icon="darkorange-bracket" help="

Material definition" morebutton="0" tree_state="close">

<value n="specific_weight" pn="Specific weight" v="7850" help="Superficial density assuming a thickness of 1

meter" unit_magnitude="M/L^2" units="kg/m^2"/>

</blockdata>

that has evolved in the version 1.0 to other names like this:

<cmas2d_customlib_data version="1.0">

...

<condition n="Point_Weight" pn="Point Weight" ov="point" ovm="node" icon="darkorange-weight-18"

groups_icon="yelowish-group" help="Concentrated mass" tree_state="close">

<value n="Weight" pn="Weight" v="0.0" unit_magnitude="M" units="kg" help="Specify the weight that you

want to apply" state=""/>

...

<condition n="Shells" pn="Shells" ov="surface" ovm="element" ov_element_types="triangle" icon="darkorange-

shellfish-18" groups_icon="yelowish-group" help="Select your material and the surfaces related to it">

...

<blockdata n="material" name="Air" sequence="1" editable_name="unique" icon="darkorange-wind-sign" help="

Material definition" morebutton="0">

<value n="Density" pn="Density" v="1.01" help="Superficial density assuming a thickness of 1 meter"

unit_magnitude="M/L^2" units="kg/m^2"/>

</blockdata>

<blockdata n="material" name="Steel" sequence="1" editable_name="unique" icon="darkorange-bracket" help="

Material definition" morebutton="0">

<value n="Density" pn="Density" v="7850" help="Superficial density assuming a thickness of 1 meter"

unit_magnitude="M/L^2" units="kg/m^2"/>

</blockdata>

A file like this <cmas2d_customlib>.transform (placed in the problemtype) can handle these changes and

convert a model v 0.1 to the current v 1.0

There are more specialized keys like these:

CONDITION XPATH {<old_condition_name> <old_condition_xpath> <current_condition_xpath>}

GiD v17

Copyright © 2024, GiD, CIMNE 78

This maps a customlib condition n="old_condition_name " and matching the xpath old_condition_xpath to the

current xpath

e.g.

To combine the Kratos 6.0 to Kratos 9.3.2

condition Parts, depending on the parent container n attribute==Structural and the child value with n==Element

and v==SmallDisplacementElement2D are mapped to a new condition name Parts_Solid.

and condition parts ot container Fluid are mapped to the current condition FluidParts

CONDITION XPATH {Parts {//condition[@n="Parts" and parent::container[@n="Structural"] and child::group

[child::value[@n="Element" and @v="SmallDisplacementElement2D"]]]} {//condition[@n="Parts_Solid"]}}

CONDITION XPATH {Parts {//condition[@n="Parts" and parent::container[@n="Fluid"]]} {//condition[@n="

FluidParts"]}}

CONDITION COMBINE_QUESTIONS_PROC {<old_condition_name>

{<old_question_1> <old_question_2>} <current_question> <tcl_proc_name_to_combine>

<value_string_0 ... value_string_3>}

This combine tho old boolean question values into a single new question with 4 possible combined values.

e.g.

To combine the Kratos 6.0 condition DISPLACEMENT with boolean (True or False) values constrainedX

and ByFunctionX into a current Kratos 9.3.2 single value named selector_component_X with 4 possible string

values "Not ByValue ByFunction ByValue"

CONDITION COMBINE_QUESTIONS_PROC {DISPLACEMENT {constrainedX ByFunctionX}

selector_component_X gid_groups_conds::transform_combine_two_dom_boolean_values {Not ByValue

ByFunction ByValue}}

For a problemtype 'classic' (without the customLib xml tree) can be used other keywords, to map general data,

interval data, and materials

GENERAL_DATA RENAME_QUESTION {<old_question> <current_question>}

CONDITION RENAME {<old_condition> <current_condition>}

CONDITION RENAME_QUESTION {<old_condition> <old_question> <current_question>}

MATERIAL RENAME {<old_material> <current_material>}

MATERIAL RENAME_QUESTION {<old_material> <old_question> <current_question>}

Import export materials

Parameter called allow_import in fields of type <blockdata>allows to add the 'Import/export materials' item in

the contextual menu for a specific 'blockdata' field.

A material is composed by a set of material properties, which can be applied to geometry entities. Import/export

tool allows to handle material properties easily. This tool is located inside the right mouse menu when a

particular material or a materials collection is selected in the data tree and allow_import parameter is activated.

In order to activate the Import/export materials tool, it is necessary to call n="materials" to the global

container in the spd-file. Moreover, although the intermediate containers could be defined using any attribute

n, each final material blockdata has to be called n="material".

GiD v17

Copyright © 2024, GiD, CIMNE 79

Compass Ingenieria y Sistemas

http://www.compassis.com

info@compassis.com

 The "Import/export materials" window contains two different material data trees. At the left side there is the

local materials list associated to the current model. At the right side there is a material data tree list, which

could be imported or exported depending on the user interests.

It is possible to import/export materials in four different ways:

1. Global database active

2. Global database inactive

3. Import from a file

4. Export to a file.

The global database active is the database shown in the data tree located at the left side of the GiD window

when a new model is created.

The global database inactive is an internal database which does not affect the default data tree for new models.

It could be used to store odd materials in order to import them for a particular model.

The global database active also allows to import the original default materials clicking on the button located just

at the right side of the "Import/export to" combo-box, which facilitates to recover easily the original input data for

materials.

It is also possible to import or export selected materials from particular XML-files without modifying the global

database.

It should be noted that the creation of new materials can be done directly using the right mouse menu in the

import/export materials window.

About CustomLib

Cimne's copyrighted CustomLib is developed between CIMNE and Compass Ingenieria y Sistemas, and it is the

library included in GiD for creating advanced customized problemtypes, i.e. adaptations to third-party simulation

codes or external programs. CustomLib terms of use are the same as the GiD ones.

Compass offers the possibility of implementing advanced customizations of GiD, based on customLib, adapted

to the specific need of every specific client. For more information about this service, please visit www.compassis.

com.

http://www.compassis.com/
mailto:info@compassis.com
http://www.compassis.com/
http://www.compassis.com/
http://www.compassis.com/

GiD v17

Copyright © 2024, GiD, CIMNE 80

CustomLIB extras

For using this extra functionality, just activate the CustomLibAutomatic field in the XML declaration file or load it

manually by requiring the package customlib_extras

The extra content on this package is:

 New fields added to the spd file.

 New functions to make everything easier.

Extra functions

The main procedures available to be used in the TCL files, are listed below. All the usages and examples can

be found on the 'cmas2d_customlib' problemtype.

 customlib::InitWriteFile filename

Open the file for writing

 customlib::EndWriteFile

 customlib::InitMaterials list_of_condition_names

The list_of_condition_names is the list of these conditions were we can find a material, so we can consider it

as 'used', assigning it a MID (Material Identifier) for further queries.

 customlib::WriteString str

Writes the content of str in the opened file

 customlib::WriteConnectivities list_of_condition_names parameters

Utility to print elements and connectivities.

In the spd file, we can define condition tags to assign properties to a GiD group. The list_of_condition_names

is the list of these conditions whose groups' elements must be printed.

parameters is a list of lists of 3 words, and defines the format and the information that we want to print. The first

word is always a format. The second word can be "element", "material", "property" or "string". "element" is set to

write element information. "material" is set to print any material property. "string" is set to print a string. The third

word depends on the second one. If it's "element", the third can be: "id" or "connectivities". If it's "material", the

third one can be "MID", "Density" or any material property according to GetMaterials function. Obviously, to use

'material' data, a material must be defined in the condition.

Valid examples:

 {"%10d" "element" "id"}

 {"%10d" "element" "connectivities"}

 {"%10d" "node" "id"}

 {"%10d" "material" "MD"}

 {"%10d" "material" "Density"}

 {"%10d" "property" "Weight"}

 {"%10d" "string" "str..."}

 ...

Example:

GiD v17

Copyright © 2024, GiD, CIMNE 81

set list_of_condition_names [list "Point_Weight"]

set parameters [list {"%1d" "element" "id"} {"%13.5e" "property"

"Weight"}]

customlib::WriteNodes $list_of_condition_names $parameters

These instructions print the following text

1 54 52 43 1

2 59 61 51 1

3 68 70 67 1

4 53 57 47 1

...

 customlib::WriteNodes list_of_condition_names parameters ?flags?

Utility to print the nodes of the groups of the conditions specified at list_of_condition_names, and the

information assigned to them.

Example:

Output

1 7.80000e+000

83 9.60000e+000

108 7.80000e+000

 customlib::GetNumberOfNodes list_of_condition_names

Utility to get the number of nodes of the groups of the conditions specified at list_of_condition_names.

 customlib::WriteCoordinates formats

Writes the coordinates of the nodes of the model.

2D example:

Output:

1 6.89301E-002 8.61382E-003

2 7.49755E-002 1.26044E-002

3 7.44487E-002 3.68638E-003

3D example:

customlib::WriteCoordinates "%5d %14.5e %14.5e %14.5e\n"

set list_of_condition_names [list "Shells"]

set parameters [list {"%10d" "element" "id"} {"%10d" "element"

"connectivities"} {"%10d" "material" "MID"}]

customlib::WriteConnectivities $list_of_condition_names $parameters

customlib::WriteCoordinates "%5d %14.5e %14.5e%.0s\n"

GiD v17

Copyright © 2024, GiD, CIMNE 82

set mat_dict [customlib::GetMaterials used]

set aluminium [dict get $mat_dict "Aluminium"]

set density [dict get $aluminium "Density"]

set mat_dict [customlib::GetMaterials used]

set aluminium [dict get $mat_dict "Aluminium"]

set density [dict get $aluminium "Density"]

Output:

1 6.89301E-002 8.61382E-003 8.61382E-003

2 7.49755E-002 1.26044E-002 1.26044E-002

3 7.44487E-002 3.68638E-003 3.68638E-003

 customlib::GetMaterials ?state?

This procedure returns a nested dict, where the first key is the name of a material, the second key is the name

of the property.

state can be 'used', to return only the used materials, or 'all' to return all the materials.

Example:

 customlib::GetMaterials ?state?

This procedure returns a nested dict, where the first key is the name of a material, the second key is the name

of the property.

state can be 'used', to return only the used materials, or 'all' to return all the materials.

Example:

 customlib::GetNumberOfMaterials ?state?

state can be 'all' or 'used'.

Returns the number of materials in the database. If state is used, it returns the number of materials used in the

model.

customlib::WriteMaterials parameters ?state?

state can be 'all' or 'used'.

Utility to print the list of materials, and their properties defined in parameters.

Example:

GiD v17

Copyright © 2024, GiD, CIMNE 83

Output:

1 7.85000e+003

2 2.65000e+003

Wizards

GiD includes a modified version of the tcl package snitwiz by Steve Casssidy. The package is called

gid_wizard, and can be found inside the scripts folder.

It is useful to create a step guieded GUI for your problemtype or plugin. It provides a window, with a header, a

body, and a footer with back, next, cancel and finish buttons, that you can configure.

You can find a basic usage example in the package folder -> GiD > scripts > gid_wizard > test.tcl

We also provide another package to make the implementation easier, called gid_smart_wizard, which allows

you to define your wizard steps in a xml file.

You can find it's documentation here -> https://github.com/GiDHome/gid_smart_wizard

You can find an example here -> http://github.com/GiDHome/cmas2d_customlib_wizard

set parameters [list {"%4d" "material" "MID"} {"%13.5e" "material"

"Density"}]

customlib::WriteMaterials $parameters used

https://github.com/GiDHome/gid_smart_wizard
http://github.com/GiDHome/cmas2d_customlib_wizard

GiD v17

Copyright © 2024, GiD, CIMNE 84

EXECUTING AN EXTERNAL PROGRAM

Once all the problem type files are finished (.cnd, .mat, .prb, .sim, .bas files), you can run the solver. You may

wish to run it directly from inside GiD.

To do so, it is necessary to create the file problem_type_name.bat in the Problem Type directory. This must be

a shell script that can contain any type of information and that will be different for every operating system. When

you select the Calculate option in GiD Preprocess this shell script is executed (see CALCULATE from

Reference Manual).

Because the .bat file will be different depending on the operating system, it is possible to create two files: one

for Windows and another for Unix/Linux. The Windows file has to be called: problem_type_name.win.bat; the

Unix/Linux file has to be called: problem_type_name.unix.bat.

If GiD finds a .win.bat or .unix.bat file, the file problem_type_name.bat will be ignored.

If a .bat file exists in the problem type directory when choosing Start in the calculations window, GiD will

automatically write the analysis file inside the example directory assigning the name project_name.dat to this file

(if there are more files, the names project_name-1.dat ... are used). Next, this shell script will be executed.

GiD will assign these arguments to this script:

 1st argument: name of the current project (e.g. project_name)

 2nd argument: path of the current project (e.g C:\temp\project_name.gid)

GiD v17

Copyright © 2024, GiD, CIMNE 85

 3rd argument: path of the problem type selected (e.g. C:\Program Files\GiD\GiD 16.1.3

d\problemtypes\problem_type_name.gid)

 4th argument: path of gid exe (e.g. C:\Program Files\GiD\GiD 16.1.3d\gid.exe)

Among other utilities, this script can move or rename files and execute the process until it finishes.

Note 1: This file must have the executable flag set (see the UNIX command chmod +x) in UNIX systems.

Note 2: GiD sets as the current directory the model directory (example: c:\examples\test1.gid) just before

executing the .bat file. Therefore, the lines (cd $directory) are not necessary in the scripts.

Note 3: In UNIX platforms check you have installed the shell you are using in the .unix.bat script, there are

more than one possibilities: bash, csh, tcsh, ...

The first line of the script specify the shell to be used, for example

#!/bin/sh

or

#!/bin/bash

In Windows platforms, the command.exe provided by GiD is used instead the standard cmd.exe or command.

com to evaluate the bat file

Showing feedback when running the solver

The information about what is displayed when Output view: is pressed is also given here. To determine what will

be shown, the script must include a comment line in the following form:

For Windows:

rem OutputFile: %1.log

For Linux/Unix:

OutputFile: "$1.log"

where "$1.log" means to display in that window a file whose name is: project_name.log. The name can also be

an absolute name like output.dat. If this line is omitted, when you press Output view:, nothing will be displayed.

Commands accepted by the GiD command.exe

The keywords are as follows:

 %

 Shift

 Rem

 Chdir (Cd)

 Del (Delete, Erase)

 Copy

 Rename (Ren, Move)

 Mkdir (Md)

 Set

 Echo

 If

 Call

 Goto

GiD v17

Copyright © 2024, GiD, CIMNE 86

 :

 Type

Unknown instructions will be executed as from an external file.

Not all the possible parameters and modifiers available in the operating system are implemented in the GiD

executable command.exe.

The '@' prefix is also handled, as not showing the command being executed.

Note: At the moment, command.exe is only used in Windows operating systems as an alternative to command.

com or cmd.exe. With the GiD command.exe some of the disadvantages of Windows can be avoided (the

limited length of parameters, temporary use of letters of virtual units that sometimes cannot be eliminated,

fleeting appearance of the console window, etc).

If GiD finds the file command.exe located next to gid.exe , it will be used to interpret the *.bat file of the

problem type; if the file command.exe cannot be found, the *.bat file will be interpreted by the windows

command.com.

If conflicts appear by the use of some instruction still not implemented in the GiD command.exe , it is possible

to rename the command.exe file, so that GiD does not find it, and the operating system command.com is used.

%

Returns the value of a variable.

%number

%name%

Parameters

number

The number is the position (from 0 to 9) of one of the parameters which the *.bat file receives.

name

The name of an environment variable. That variable has to be declared with the instruction "set".

Note: GiD sends three parameters to the *.bat file: %1, %2, %3

%1 is the name of the current project (project_name)

%2 is the path of the current project (c:\a\b\c\project_name.gid)

%3 is path of the problem type (c:\a\b\c\problem_type_name.gid)

For example, if GiD is installed in c:\gidwin, the "problemtype" name is cmas2d.gid and the project is test.gid,

located in c:\temp (the project is a directory called c:\temp\test.gid with some files inside), parameters will have

the following values:

%1 test

%2 c:\temp\test.gid

%3 c:\gidwin\problemtypes\cmas2d.gid

Note: It is possible that the file and directory names of these parameters are in the short mode Windows format.

So, parameter %3 would be: c:\GIDWIN\PROBLE~\CMAS2D.GID.

GiD v17

Copyright © 2024, GiD, CIMNE 87

echo %1 > %2%1.txt

echo %TEMP% >> %1.txt

Examples

Predefined dynamic variables:

CD The current directory (string).

Example: c:\GiD\problemtypes

CMDCMDLINE The original command line that invoked the 'command.exe'

Example: C:\GiD\command.exe myProject c:\Users\gid\myProject.gid c:

\GiD\problemtypes\myProblemType.gid

DATE The current date.

Example: 2021-12-02

RANDOM A random integer number, anything from 0 to 32,767 (inclusive).

Example: 20211

TIME The current time, with a resolution of cents of seconds.

Example: 20:21:12.02

Shift

The shift command changes the values of parameters %0 to %9 copying each parameter in the previous one.

That is to say, value %1 is copied to %0, value %2 is copied to %1, etc.

Parameter

None.

Note: The shift command can be used to create a batch program that accepts more than 10 parameters. If it

specifies more than 10 parameters in the command line, those that appear after tenth (%9) will move to

parameter %9 one by one.

Rem

Rem is used to include comments in a *.bat file or in a configuration file.

rem[comment]

Parameter

comment

Any character string.

Note: Some comments are GiD commands.

Chdir (Cd)

Changes to a different directory.

GiD v17

Copyright © 2024, GiD, CIMNE 88

chdir e:\tmp cd ..

delete %2%1\file.cal

del C:\tmp\fa.dat C:\tmp\fb.dat

del "C:\Program files\test 4.txt"

chdir[drive:path] [..]

or

cd[drive:path] [..]

Parameters

[drive:path]

Disk and path of the new directory.

[..]

Goes back one directory. For example if you are within the C:\WINDOWS\COMMAND> directory this would

take you to C:\WINDOWS>.

Note: When GiD calls the *.bat file, the path of the project is the current path, so it is not necessary to use cd %

2 at the beginning of the *.bat file.

Examples

Delete (Del, Erase) Command used to delete files and folders permanently from the computer.

delete[drive:][path] fileName [fileName]

Parameters

[drive:][path] fileName [fileName] Parameters that specify the location and the name of the file that has to be

erased from disk. Several file names can be given.

Note: Files will be eliminated although they have the hidden or read only flag. Use of wildcards is not allowed.

For example del . is not valid. File names must be separated by spaces and if the path contains blank spaces,

the path should be inside inverted commas (the short path without spaces can also be used).

Examples

Copy

Copies one or more files to another location.

copy source [+ source [+ ...]] destination

Parameters

source Specifies the file or files to be copied.

destination Specifies the filename for the new file(s).

GiD v17

Copyright © 2024, GiD, CIMNE 89

copy f1.txt f2.txt

copy f1.txt c:\tmp

rem if directory c:\tmp exists, c:\tmp\f1.txt will be created, if it

does not exist, file c:\tmp will be created.

copy a.txt + b.txt + c.txt abc.txt

Rename fa.txt fa.dat

Rename "c:\Program Files\fa.txt" c:\tmp\fa.txt

Rename c:\test.gid c:\test2.gid

To append files, specify a single file for destination, but multiple files for source (using the file1 + file2 + file3

format).

Note: If the destination file already exists, it will be overwritten without prompting whether or not you wish to

overwrite it.

File names must be separated by spaces. If the destination only contains the path but not the filename, the new

name will be the same as the source filename.

Examples

Rename (Ren, Move)

Used to rename files and directories from the original name to a new name.

rename[drive:][path] fileName1 fileName2

Parameter [drive:][path] fileName1 Specifies the path and the name of the file which is to be renamed.

fileName2 Specifies the new name file.

Note: If the destination file already exists, it will be overwritten without prompting whether or not you wish to

overwrite it. Wildcards are not accepted (*,?), so only one file can be renamed every time. Note that you cannot

specify a new drive for your destination. A directory can be renamed in the same way as if it was a file.

Examples

Mkdir (md)

Allows you to create your own directories.

mkdir[drive:]pathmd [drive:]path

Parameter

drive: Specifies the drive where the new directory has to be created.

path Specifies the name and location of the new directory. The maximum length of the path is limited by the file

system.

Note: mkdir can be used to create a new path with many new directories.

GiD v17

Copyright © 2024, GiD, CIMNE 90

set basename = %1

set v1 = my text

mkdir e:\tmp2

mkdir d1\d2\d3

Echo %1 > out.txt

Echo %path% >> out.txt

If Not Exist %2%1.post.res Echo "Program failed" >> %2%1.err

Examples

Set

Displays, sets, or removes Windows environment variables.

set variable=[string]

Parameters

variable Specifies the environment-variable name.

string Specifies a series of characters to assign to the variable.

Note: The set command creates variables which can be used in the same way as the variables %0 to %9.

Variables %0 to %9 can be assigned to new variables using the set command.

To get the value of a variable, the variable has to be written inside two % symbols. For example, if the

environment-variable name is V1, its value is %V1%. Variable names are not case-sensitive.

Examples

Echo

Displays messages.

echo [message]

Parameters

message Specifies the text that will be displayed in the screen.

Note: The message will not be visible because the console is not visible, since GiD hides it.Therefore, this

command is only useful if the output is redirected to a file (using > or >>). The symbol > sends the text to a new

file, and the symbol >> sends the text to a file if it already exists. The if and echo commands can be used in the

same command line.

Examples

GiD v17

Copyright © 2024, GiD, CIMNE 91

if exist sphere.igs echo File exists >> out.txt

if not exist test.gid echo Dir does not exist >> out.txt

if %1 == test echo Equal %1 >> out.txt

call test.bat %1

call gid.exe -n -PostResultsToBinary %1.post.res %1.post.bin

If

Executes a conditional sentence. If the specified condition is true, the command which follows the condition will

be executed; if the condition is false, the next line is ignored.

 if[not] exist fileName command

 if [not] string1==string2 command

 if[not] errorlevel number command

Parameters

not Specifies that the command has to be executed only if the condition is false.

exist file Returns true if file exists.

command Is the command that has to be executed if the condition returns true.

string1==string2 Returns true if string1 and string2 are equal. It is possible to compare two strings, or variables

(for example, %1).

errorlevel number Returns true if the last program executed returned a code equal to or bigger than the number

specified.

Note: Exist can also be used to check if a directory exists.

Examples

Call

Executes a new program.

call[drive:][path] file [parameters]

Parameter

[drive:][path] file Specifies the location and the name of the program that has to be executed.

parameters Parameters required by the program executed.

Note: The program can be *.bat file, a *.exe file or a *.com file. If the program does a recursive call, some

condition has to be imposed to avoid an endless curl.

Examples

GiD v17

Copyright © 2024, GiD, CIMNE 92

goto :EOF

if exist %1.err goto end

...

:end

:my_label

:end

Goto

The execution jumps to a line identified by a label.

goto label

Parameter

label It specifies a line of the *.bat file where the execution will continue. That label must exist when the Goto

command is executed. A label is a line of the *.bat file and starts with ":". Goto is often used with the command

if, in order to execute conditional operations. The Goto command can be used with the label :EOF to make the

execution jump to the end of the *.bat file and finish.

Note: The label can have more than eight characters and there cannot be spaces between them. The label

name is not case-sensitive.

Example

:

Declares a label.

:labelName

Parameter

labelName A string which identifies a line of the file, so that the Goto command can jump there. The label line

will not be executed.

Note: The label can have more than eight characters and there cannot be spaces between them. The label

name is not case-sensitive.

Examples

Type

Displays the contents of text files.

type[drive:][path] fileName

GiD v17

Copyright © 2024, GiD, CIMNE 93

type %2%1.dat > %2%1.txt

%3/your_solver.exe %2/%1.dat > "%2/output.txt" 2> "%2/error.txt"

rem ErrorFile: %1.err

ErrorFile: "$1.err"

Parameters

[drive:][path] fileName Specifies the location and the name of the file to be displayed. If the file name contains

blank spaces it should be inside inverted commas ("file name").

Note: The text will not be visible because the console is not visible, since GiD hides it Therefore, this command

is only useful if the output is redirected to a file (using > or >>). The symbol > sends the text to a new file, and

the symbol >> sends the text to a file if it already exists. It is recommended to use the copy command instead of

type.

In general, the type command should not be used with binary files.

Examples

Redirection of output of a program. The redirection symbols > and >> redirect the standard output (stdout) of a

console program, it is possible to redirect also the error output (stderr) to a file adding at the end 2>

"your_error_filename" (2 represents the stderr channel)

Examples

In the example %1 %2 %3 represent the typical arguments provided to the bat file when starting the calculation

from GiD (%1 is the name of the model, %2 the path to this model, %3 the path to the problemtype where

your_solver.exe is expected and it receive as argument the full path to its .dat input file, and if the solver print

messages to stdout or stderr they will appear in the files output.txt and error.txt respectively.

Managing errors

A line of code like

For Windows

For Linux/UNIX

included in the .bat file means that the given filename is the error file. At the end of the execution of the .bat file,

if the errorfile does not exist or is zero, execution is considered to be successful. If not, an error window appears

and the contents of the error file are considered to be the error message. If this line exists, GiD will delete this

file just before calculating to avoid errors with previous calculations.

A comment line like

GiD v17

Copyright © 2024, GiD, CIMNE 94

#!/bin/sh

basename = $1

directory = $2

ProblemDirectory = $3

OutputFile: "$1.log"

ErrorFile: "$1.err"

rm -f "$basename.post.res"

"$ProblemDirectory/myprogram" "$basename"

mv "$basename.results" "$basename.post.res"

rem basename=%1

rem directory=%2

rem ProblemDirectory=%3

rem OutputFile: %1.log

rem ErrorFile: %1.err

del %1.post.res

%3\myprogram %1

move %1.post %1.post.res

rem WarningFile: %1.wrn

or

WarningFile: "$1.wrn"

included in the .bat file means that the given filename is the warning file. This file stores the warnings that may

appear during the execution of the .bat file.

Examples

Here are two examples of easy scripts to do. One of them is for Unix/Linux machines and the other one is for

MS-Dos or Windows.

 UNIX/Linux example:

MS-DOS/Windows example:

GiD v17

Copyright © 2024, GiD, CIMNE 95

PREPROCESS DATA FILES

Geometry format: Modelname.geo

DESCRIPTION OF THE FORMAT

There are two versions of the <modelname>.geo GiD format: Binary (used by GiD by default) and ASCII. This

chapter describes the format of the geometry ASCII file.

During the development of the program, the backward compatibility has been tried to be guaranteed as much as

possible, so that, in general, any GiD version is be able to read it (some very old version of GiD can ignore

some new entities).

GiD v17

Copyright © 2024, GiD, CIMNE 96

Header

Problem type

Must Repair

An entry for each layer

Null entity (denotes end of layers)

An entry for each meshing data (avoid if not

exits)

Null entity (denotes end of mesh data)

An entry for each point

An entry for each curve

An entry for each surface

An entry for each volume

Null entity (denotes end of geometric entities)

 The file ".geo", is written using Export->SaveAsciiProject, but by default the geometry will be saved in binary

format. In order to GiD to read the file, it should be placed inside a directory named ".gid"

Document notation:

 By default all the variables are of type integer, the variables of type float will be written underlined, and those

of type double with double underlined. (data types of the "C" language)

 A carriage return is denoted for <CR>

 The commas written to separate the variables should not be written in the file, they only appear in this

document to facilitate their reading, and the same applies for the white lines.

The file should contain the following fields, and in the described order:

Header

RAMSAN-ASCII-gid-v7.6 <CR> (it is used to identify the file type and its version, in this case 7.6)

Problem Type

Problem type (variable of type string) IsQuadratic (0 for lineal elements)

(problem type name, UNKNOWN type for not loading none)

Must Repair

0 (0 if it is not necessary to apply the "Repair" function after the reading, "Repair" corrects the value of some

fields like the counter of the number of higher entities to those an entity is subordinated to)

Layer

Number of layer, Name (variable of type string), isfrozen (0 or 1),ison (0 or 1), RGB_R, RGB_G, RGB_B (RGB

color, values from 0 to 255) <CR>

Null entity

Code of null entity=0<CR> (used as "flag" for end of entities)

NoStructuredMeshData

Entity code= -1, number ID, NumOfEntities (number of entities than point to it), elementtype, MustBeMeshed (0

or 1, default=0), size (edge element size), <CR>

GiD v17

Copyright © 2024, GiD, CIMNE 97

StructuredMeshData

Entity Code= -2, number ID, NumOfEntities, elementtype, MustBeMeshed, Size, <CR>

StructuredWeightedMeshData

Entity Code= -3, number ID, NumOfEntities, elementtype, MustBeMeshed, Size (number of divisions), weight

(positive or negative value to a non uniform concentration of the elements)<CR>

Where ElemType={NoNe=0, Linear=1, Triangle=2, Quadrilateral=3, Tetrahedra=4, Hexahedra=5, Prism=6,

OnlyPoints=7}

Point

Entity Code=1, number ID, label, selection, number of higher entities, conditions=0, material=0, number layer,

mesh data=0<CR>

x, y, z <CR>

*The flag value label is only used by old GiD versions (to set on/off the visualization of the entity label), current

versions use only selection for both flags (first bit for selection on/off and second bit for label on/off)

Straight segment

Entity Code=2, number GOES, labels, selection, number of higher entities, conditions=0, material=0, number

layer, mesh data=0 < CR >

Number of initial point, number of final point <CR>

Arc

Entity Code=3, number ID, label, selection, number of higher entities, conditions=0, material=0, number layer,

mesh data=0,<CR>

Number of initial point, number of final point, x center, y center, radius, initial angle, final angle <CR>

TransformationMatrix [0] [0], ..., TransformationMatrix [0] [3] ,<CR>

...

TransformationMatrix [3] [0], ..., TransformationMatrix [3] [3] ,<CR>

The transformation matrix maps the points from 2D to the final 3D location.

Polyline

Entity Code=4, number of ID, label, selection, number of higher entities, conditions=0, material=0, number of

layer, mesh data=0,<CR >

Number of initial point, number of final point, number of parts, length, UsePointsInMeshing=0, checknum=0 <

CR >

sense[1] ,..., sense[number parts] <CR > (gives the orientation of the sub line, possible values 0 or 1)

length[1], ...,length[number parts] <CR>

here the description for each one of the n sub-curves is written, with the particularity that the number is set = -1

to all of them, to mark that they are not independent entities.

NURBS curve

Entity Code=11, number ID, label, selection, number of higher entities, conditions=0, material=0, number layer,

mesh data=0,<CR>

Number of initial point, number of final point, number de polygon control points, degree, length <CR>

x point[1], y point[1], z point[1] <CR>

...

x point [number points], y point [number points], z point [number points] <CR>

knots[1], ... , knots [number points+degree+1], <CR>

GiD v17

Copyright © 2024, GiD, CIMNE 98

IsRational (0 or 1)

Weight[1] ,..., Weight [number points] (only if rational)

The length is ignored when reading, it is recalculated (it could be set to 0.0)

Planar Surface

Entity Code=5, number ID, label, selection, number of higher entities, conditions=0, material=0, number layer,

mesh data=0 <CR>

Number of boundary lines, <CR>

number of curve[1], ... , number of curve[number of lines] <CR>

(Note: if the curve is a part of a polyline it should be substituted "number of curve[i]" for "- number curve[i],

relative position inside the poly-line". Note the negative sign in the polyline number, and the position in the

polyline will be 0,1,...)

sense[1], ..., sense[number of lines],<CR> (set the orientation of a segment, must be 0 or 1)

x center, y center, z center, <CR>

x normal, y normal, z normal, <CR> (vector normal to the plane)

Coons Surfaces (defined by 4 sides, their interior is interpolated from the contour)

Entity Code=6, number of ID, label, selection, number of higher entities, conditions=0, material=0, number of

layer, mesh data=0,<CR>

Number of boundary lines=4, <CR>

Number of curve[1], ... , number of curve[4], <CR>

(Note: if the curve is part of a polyline it should be substituted "number of curve[i]" for "- number of curve[i],

relative location inside the polyline", note the negative sign in the polyline number, and the position in the

polyline will be 0,1,...)

sense[1], ..., sense[4] <CR> (set the segment orientation, must be 0 or 1)

x center, y center, z center, <CR>

x normal, y normal, z normal, <CR> (vector normal to the plane)

NURBS Surface

Entity Code=14, number of ID, label, selection, number of higher entities, conditions=0, material=0, number of

layer, mesh data=0,<CR >

Number of boundary lines=4, <CR>

Number of curve[1], ... , number of curve[4], <CR>

sense[1], ..., sense[4] <CR> (set the segment orientation, must be 0 or 1)

x center, y center, z center, <CR>

x normal, y normal, z normal, <CR> (vector normal to the plane)

IsTrimmed, NU (number of control points in the U direction), NV, degreeU (polynomial degree), degreeV <CR>

x point[1], y point[1], z point[1], <CR>

...

x point[NU*NV], y point[NU*NV], z point[NU*NV], <CR>

knotsU[1], ... , knotsU [NU+degreeU+1], <CR>

knotsV[1], ... , knotsV [NV+degreeV+1], <CR>

IsRational (0 or 1)

Weight[1] ,..., Weight [NU*NV] (only if rational)

Volume

Entity Code=9, number of ID, label, selection, number of higher entities, conditions=0, material=0, number of

layer, mesh data=0 <CR>

Number of boundary surfaces <CR>

Number of surface[1], ... , number of surface[number of surfaces], <CR>

sense[1], ..., sense [number of surfaces],<CR> (segment orientation, 0 or 1)

x center, y center, z center, <CR>

GiD v17

Copyright © 2024, GiD, CIMNE 99

This example consists on a simple cylinder, like the one shown on the

right.

It contains points, curves of type straight lines, circumference arcs and

curved NURBS with circumference shape, and surfaces of the types

planar, Coon and NURBS with cylindrical form, and there is a single

volume.

Note: This model could be found at: Examples\Cylinder_ASCII.gid

RAMSAN-ASCII-gid-v7.6

UNKNOWN 0

Rules to follow:

There are four level types of geometrical entities: Point, Curves (straight segment, arc, polyline, Nurbs), Surface

(planar, Coon, Nurbs) and Volume.

 Geometrical entities of the same type cannot have the same ID number associated (is not valid to have two

curves with same ID)

 The numeration begins with 1 (not by 0 like in the "C" style), and it could be jumps in the numeration (e.g.

when a entity is deleted).

 The entities of a level are listed with increasing ID.

 The center of the entities doesn't refer to the geometric center, it is simply an approximate center where its

label will be drawn.

 The higherentities number can be initialized to zero, and it will be corrected automatically if "Must Be

repaired" flag was set to 1. In any case is recommended to set the righ value and avoid the reparation.

 The lenght of NURBS curves could be set to zero, current versions ignore this value and recalculate it.

 Parametric curves are normalized to parameter space [0.0,1.0]

 Parametric curve must have its initial point at parameter 0.0 and end point at parameter 1.0. A closed curve

must share the same start and end point.

 Parametric surfaces are normalized to parameter space [0.0,1.0]x[0.0,1.0]

 The boundary curves of a surface define a outer loop and some possible inner loops. The outer loop is

before outer loops.

 The curves of a loop are ordered consecutivelly. A loop finish when the starting point of the first curve (taking

into account its sense for the surface) is equal to the last point of other curve.

 The ordering and orientation of the boundary curves must agree with the surface normal (Xu^Xv) (right-hand

rule). The outer loop must point to the same sense as the surface normal, and inner loops is any in the

opposite sense.

 Volumes are defined by a closed shell of surfaces: first surfaces must define the outer shell, and then the

inner shells.

 The order of surfaces on a 'volume shell' is not relevant, but the orientation must be 0 (SAME1ST) is the

surface normal points inside the volume.

Geometry example

GiD v17

Copyright © 2024, GiD, CIMNE 100

0

1 Tops 0 1 0 0 255

2 Lateral 0 1 0 255 255

0

0

1 1 1 2 3 0 0 2 0

-1.65134 -1.60324 0

1 2 1 2 3 0 0 2 0

-1.65134 -1.60324 3.76945

1 3 1 2 3 0 0 2 0

-1.80449 -3.49553 0

1 4 1 2 3 0 0 2 0

-1.80449 -3.49553 3.76945

2 1 1 2 2 0 0 2 0

1 2

2 2 1 2 2 0 0 2 0

3 4

11 3 1 2 2 0 0 2 0

1 3 5 2 2.98214

-1.65134 -1.60324 0

-2.59749 -1.52666 0

-2.67407 -2.47281 0

-2.75064 -3.41896 0

-1.80449 -3.49553 0

0 0 0 0.5 0.5 1 1 1

1 1 0.707107 1 0.707107 1

11 4 1 2 2 0 0 2 0

2 4 5 2 2.98214

-1.65134 -1.60324 3.76945

-2.59749 -1.52666 3.76945

-2.67407 -2.47281 3.76945

-2.75064 -3.41896 3.76945

-1.80449 -3.49553 3.76945

0 0 0 0.5 0.5 1 1 1

1 1 0.707107 1 0.707107 1

11 5 1 2 2 0 0 2 0

3 1 5 2 2.98213

-1.80449 -3.49553 0

-0.858344 -3.57211 0

-0.781767 -2.62596 0

-0.70519 -1.67981 0

-1.65134 -1.60324 0

0 0 0 0.5 0.5 1 1 1

1 1 0.707107 1 0.707107 1

3 6 1 2 2 0 0 2 0

4 2 -0.315383 0.025526 0.949244 4.63163 7.77322

1 0 0 0

0 1 0 0

0 0 1 0

GiD v17

Copyright © 2024, GiD, CIMNE 101

-1.41253 -2.57491 3.76945 1

14 1 1 2 1 0 0 2 0

4

1 4 2 3

0 0 1 1

-2.67407 -2.47281 1.88473

0.996741 -0.080672 0

0 2 5 1 2

-1.65134 -1.60324 0

-1.65134 -1.60324 3.76945

-2.59749 -1.52666 0

-2.59749 -1.52666 3.76945

-2.67407 -2.47281 0

-2.67407 -2.47281 3.76945

-2.75064 -3.41896 0

-2.75064 -3.41896 3.76945

-1.80449 -3.49553 0

-1.80449 -3.49553 3.76945

0 0 1 1

0 0 0 0.5 0.5 1 1 1

1 1 1 0.707107 0.707107 1 1 0.707107 0.707107 1 1

6 2 1 2 1 0 0 2 0

4

1 5 2 6

1 1 0 0

-0.781767 -2.62596 1.88473

-10.6459 0.861634 -0

14 3 1 2 1 0 0 1 0

2

5 3

0 0

-1.72792 -2.54939 0

0 0 1

1 2 2 1 1

-2.7699 -1.5074 0

-2.7699 -3.59137 0

-0.685932 -1.5074 0

-0.685932 -3.59137 0

0 0 1 1

0 0 1 1

0

5 4 1 2 1 0 0 1 0

2

6 4

1 1

-1.41253 -2.57491 3.76945

0 0 -1

9 1 1 2 0 0 0 2 0

4

GiD v17

Copyright © 2024, GiD, CIMNE 102

This is the explanation of its content:

RAMSAN-ASCII-gid-v7.6

UNKNOWN 0

0

The GiD geometry ASCII file is wrote with rules of version 7.6, and without any problemtype (UNKNOWN)

The model has two layers, created with:

1 Tops 0 1 0 0 255

2 Lateral 0 1 0 255 255

0

The layer number 1 is named 'Tops', is not frozen, visible, and with RGB color R=0, G=0, B=255 (blue)

The layer number 2 is named 'Lateral', is not frozen, visible, and with RGB color R=0, G=255, B=255 (cyan)

Last 0 denotes the end of layers block

0

There is no meshing information attached to entities.

Then four points (code=1) are defined:

1 1 1 2 3 0 0 2 0

-1.65134 -1.60324 0

1 2 1 2 3 0 0 2 0

-1.65134 -1.60324 3.76945

1 3 1 2 3 0 0 2 0

-1.80449 -3.49553 0

1 4 1 2 3 0 0 2 0

-1.80449 -3.49553 3.76945

p1=(-1.65134,-1.60324,0)

p2=(-1.65134,-1.60324,3.76945)

p3=(-1.80449,-3.49553,0)

p4=(-1.80449,-3.49553,3.76945)

the meaning of

1 1 1 2 3 0 0 2 0

is

1==type_point 1=point_id 1=label_on 2=label_on_selection_off 3=higherentities 0=num_conditions

0=id_material 2=layer 'Lateral' 0=has_mesh_data

the point 1 belong to 3 curves (1, 3 and 5) then higherentities must be 3

1 2 4 3

0 0 0 0

-1.72792 -2.54939 1.88473

0

GiD v17

Copyright © 2024, GiD, CIMNE 103

2 1 1 2 2 0 0 2 0

1 2

2 2 1 2 2 0 0 2 0

3 4

This define curves 1 and 2 that are straigth lines (type==2). In this model that close a volume all curves belong

to two surfaces, then its higherentity counter is 2

The curve 1 starts in the point 1 and end in the point 2

11 3 1 2 2 0 0 2 0

1 3 5 2 2.98214

-1.65134 -1.60324 0

-2.59749 -1.52666 0

-2.67407 -2.47281 0

-2.75064 -3.41896 0

-1.80449 -3.49553 0

0 0 0 0.5 0.5 1 1 1

1 1 0.707107 1 0.707107 1

11 4 1 2 2 0 0 2 0

2 4 5 2 2.98214

-1.65134 -1.60324 3.76945

-2.59749 -1.52666 3.76945

-2.67407 -2.47281 3.76945

-2.75064 -3.41896 3.76945

-1.80449 -3.49553 3.76945

0 0 0 0.5 0.5 1 1 1

1 1 0.707107 1 0.707107 1

11 5 1 2 2 0 0 2 0

3 1 5 2 2.98213

-1.80449 -3.49553 0

-0.858344 -3.57211 0

-0.781767 -2.62596 0

-0.70519 -1.67981 0

-1.65134 -1.60324 0

0 0 0 0.5 0.5 1 1 1

1 1 0.707107 1 0.707107 1

Previous text define curves 3, 4 and 5 that are NURBS (type==11)

1=start point 3=end point 5=num control points 2=degree 2.98214=length

the 5 control points coordinates are:

-1.65134 -1.60324 0

-2.59749 -1.52666 0

-2.67407 -2.47281 0

-2.75064 -3.41896 0

-1.80449 -3.49553 0

and the knots vector is:

0 0 0 0.5 0.5 1 1 1

1=is rational, weights= 1 0.707107 1 0.707107 1

3 6 1 2 2 0 0 2 0

4 2 -0.315383 0.025526 0.949244 4.63163 7.77322

1 0 0 0

GiD v17

Copyright © 2024, GiD, CIMNE 104

0 1 0 0

0 0 1 0

-1.41253 -2.57491 3.76945 1

And curve 6 is a circumference arc (type==11)

4=start point 2=end point (-0.315383 0.025526)=2D center 0.949244=radius 4.63163=start angle 7.77322=end

angle (rad)

and

1 0 0 0

0 1 0 0

0 0 1 0

-1.41253 -2.57491 3.76945 1

is a 4x4 transformation matrix that moves the 2D arc to the final 3D location

14 1 1 2 1 0 0 2 0

4

1 4 2 3

0 0 1 1

-2.67407 -2.47281 1.88473

0.996741 -0.080672 0

0 2 5 1 2

-1.65134 -1.60324 0

-1.65134 -1.60324 3.76945

-2.59749 -1.52666 0

-2.59749 -1.52666 3.76945

-2.67407 -2.47281 0

-2.67407 -2.47281 3.76945

-2.75064 -3.41896 0

-2.75064 -3.41896 3.76945

-1.80449 -3.49553 0

-1.80449 -3.49553 3.76945

0 0 1 1

0 0 0 0.5 0.5 1 1 1

1 1 1 0.707107 0.707107 1 1 0.707107 0.707107 1 1

Surface 1 is a NURBS surface (type==14), it has 4 boundary lines: 1, 4, 2, 3, with orientations same, same, diff,

diff respectivelly

Its approximated center is (-2.67407 -2.47281 1.88473)

normal=(0.996741 -0.080672 0)

0=untrimmed 2=number control points u 5=number control points v 1=degree u 2=degree v

then are listed the control points, the knots u=(0 0 1 1) and knots v=(0 0 0 0.5 0.5 1 1 1)

and the weights=(1 1 0.707107 0.707107 1 1 0.707107 0.707107 1 1)

6 2 1 2 1 0 0 2 0

4

1 5 2 6

1 1 0 0

-0.781767 -2.62596 1.88473

-10.6459 0.861634 -0

Surface 1 is a Coons surface (type==6), it has 4 boundary lines: 1, 5, 2, 6, with orientations diff, diff, same,

GiD v17

Copyright © 2024, GiD, CIMNE 105

same. Then is printed its approximated center and normal.

The shape of kind of surface is defined only by its boundary.

14 3 1 2 1 0 0 1 0

2

5 3

0 0

-1.72792 -2.54939 0

0 0 1

1 2 2 1 1

-2.7699 -1.5074 0

-2.7699 -3.59137 0

-0.685932 -1.5074 0

-0.685932 -3.59137 0

0 0 1 1

0 0 1 1

0

Surface 3 is like the 1 a NURBS surface (type==14), but in this case is trimming a planar squared shape.

5 4 1 2 1 0 0 1 0

2

6 4

1 1

-1.41253 -2.57491 3.76945

0 0 -1

Surface 4 is a planar surface (type==5), that is defined by a center and normal, and the trimming boundary lines.

9 1 1 2 0 0 0 2 0

4

1 2 4 3

0 0 0 0

-1.72792 -2.54939 1.88473

0

This define the volume 1 (type==9) that is defined by 4 boundary surfaces: 1, 2, 4, 3 with orientations same,

same, same, same.

and approximated center=(-1.72792 -2.54939 1.88473)

Last 0 is a NULL entity (type==0) that finish the definition of geometrical entities.

GiD v17

Copyright © 2024, GiD, CIMNE 106

POSTPROCESS DATA FILES

In GiD Postprocess you can study the results obtained from a solver program. The solver and GiD Postprocess

communicate through the transfer of files. The solver program has to write the results to a file that must have

the extension .post.res and its name must be the project name. Other allowed extensions are .post.lst,.post.bin

and .post.h5.

The solver program can also send the postprocess mesh to GiD (though this is not mandatory), in the same .

GiD v17

Copyright © 2024, GiD, CIMNE 107

post.res,.post.bin or .post.h5 file or in a separate .post.msh acii file. If this mesh is not provided by the solver

program, GiD uses the preprocess mesh in Postprocess.

Other files with the extensions .msh,.res,.bin,.lst,.h5 can be read into postprocess but only those with the .post

suffix are automatically read into GiD when entering the post-process model

Postprocessing data files can be:

 ASCII files, where the mesh and results should be provided in two separated files;

 binary files, a binary version of the ASCII files but mesh and results can be stored in one file;

 hdf5 files, mesh and results are stored in one hdf5 file.

All three formats can be written using the freely available GiDPost library, whose source code, and some pre-

built binaries, can be downloaded from https://www.gidsimulation.com --> GiDPlus --> GidPost.

From now on the explanation will be focused in the ASCII format. The details about the binary and hdf5 format

are explained afterwards in a separated section.

The ASCII format consists of two files:

 Mesh Data File: project_name.post.msh for volume and surface (3D or 2D) mesh information, and

 Results Data File: project_name.post.res for results information.

Note:ProjectName.post.msh handles meshes of different element types: points, lines, triangles, quadrilaterals,

tetrahedra and hexahedra.

If a project is loaded into GiD, when changing to GiD Postprocess it will look for ProjectName.post.res. If a

mesh information file with the name ProjectName.post.msh is present, it will also be read, regardless of the

information available from GiD Preprocess.

 ProjectName.post.msh: This file should contain nodal coordinates of the mesh and its nodal connectivities

as well as the material of each element. At the moment, only one set of nodal coordinates can be entered.

Different kinds of elements can be used but separated into different sets. If no material is supplied, GiD

takes the material number to be equal to zero.

 ProjectName.post.res: This second file must contain the nodal or gaussian variables. GiD lets you define

as many nodal variables as desired, as well as several steps and analysis cases (limited only by the memory

of the machine). The definitions of the Gauss points and the results defined on these points should also be

written in this file.

The files are created and read in the order that corresponds to the natural way of solving a finite element

https://www.gidsimulation.com/

GiD v17

Copyright © 2024, GiD, CIMNE 108

GiD Post Results File <version>

include "My Other Results File"

problem: mesh, surface definition and conditions and finally, evaluation of the results. The format of the read

statements is normally free, i.e. it is necessary only to separate them by spaces.

Thus, files can be modified with any format, leaving spaces between each field, and the results can also be

written with as many decimal places as desired. Should there be an error, the program warns the user about the

type of mistake found.

GiD reads all the information directly from the preprocessing files whenever possible in order to gain efficiency.

Results format: ModelName.post.res

Note: Code developers can download the GiDpost tool from the GiD web page (https://www.gidsimulation.com

/downloads/gidpost); this is a C/C++/Fortran library for creating postprocess files for GiD in both ASCII and

compressed binary format.

This is the ASCII format description:

The first line of the files with results written in this new postprocess format should be:

where <version> must be:

1.0 in general

>=1.1 in case of binary compressed format

>=1.2 in case of contain some OnNurbsSurface result

Comment lines are allowed and should begin with a '#'. Blank lines are also allowed.

Results files can also be included with the keyword include, for instance:

This is useful, for instance, for sharing several GaussPoints definitions and ResultRangeTable among different

analyses.

This 'include' should be outside the Blocks of information.

There are several types of Blocks of information, all of them identified by a keyword:

GaussPoints: Information about gauss points: name, number of gauss points, natural coordinates, etc.;

ResultRangesTable: Information for the result visualization type Contour Ranges: name, range limits and

range names;

Result: Information about a result: name, analysis, analysis/time step, type of result, location, values;

https://gidsimulation.atlassian.net/wiki/spaces/GPT/overview
https://www.gidsimulation.com/downloads/gidpost
https://www.gidsimulation.com/downloads/gidpost

GiD v17

Copyright © 2024, GiD, CIMNE 109

 ResultGroup: several results grouped in one block. These results share the same analysis, time step, and

location (nodes or gauss points).

Gauss Points

If Gauss points are to be included, they must be defined before the Result which uses them. Each Gauss points

block is defined between the lines GaussPoints and End GaussPoints.

The structure is as follows, and should:

 Begin with a header that follows this model:

GaussPoints "gauss_points_name" Elemtype my_type "mesh_name"

where

 GaussPoints, elemtype: are not case-sensitive;

 "gauss_points_name": is a name for the gauss points set, which will be used as reference by the results that

are located on these gauss points;

 my_type: describes which element type these gauss points are for, i.e. Line, Triangle, Quadrilateral,

Tetrahedra, Prism, Pyramid or Hexahedra ;

 "mesh_name": is an optional field. If this field is missing, the gauss points are defined for all the elements of

type my_type. If a mesh name is given, the gauss points are only defined for this mesh.

 Be followed by the gauss points properties:

Number of Gauss Points: number_gauss_points_per_element

Nodes included

Nodes not included

Natural Coordinates: Internal

Natural Coordinates: Given

natural_coordinates_for_gauss_point_1 . . .

natural_coordinates_for_gauss_point_n

where

 Number of Gauss Points: number_gauss_points_per_element: is not case-sensitive and is followed by

the number of gauss points per element that defines this set. If Natural Coordinates: is set to Internal,

number_gauss_points_per_element should be one of:

 1, 3, 6 for Triangles;

 1, 4, 9 for Quadrilaterals;

 1, 4, 10 for Tetrahedra;

 1, 8, 27 for Hexahedra;

 1, 6 for Prisms;

 1, 5 for Pyramids; and

 1, ... n points equally spaced over lines.

For triangles and quadrilaterals the order of the gauss points with Internal natural coordinates will be this:

Gauss Points positions of the quadrature of Gauss-Legendre Quadrilaterals

GiD v17

Copyright © 2024, GiD, CIMNE 110

Internal coordinates: Internal coordinates: Internal coordinates:

(0, 0) a=0.57735027 a=0.77459667
 (-a,-a) (a,-a) (a, a)
 (-a,-a) (a,-a) (-a, a) (0,-a) (a, 0)

 (a, a) (-a, a) (0, a) (-a, 0) (0, 0)

Gauss Points positions of the quadrature of Gauss for Triangles

Internal coordinates: Internal coordinates: Internal coordinates:

a=1/3 a=1/2 a=0.09157621 b=0.
 81684757
 c=0.44594849 d=0.

(a, a) (a, 0) (a, a) (0, a) 10810301
 (a, a) (b, a) (a, b)

 (c, d) (c, c) (d, c)

For tetrahedra the order of the Internal Gauss Points is this:

GiD v17

Copyright © 2024, GiD, CIMNE 111

Internal coordinates: Internal coordinates:

a=(5+3*sqrt(5))/20=0. a=0.108103018168070

585410196624968 b=0.445948490915965

b=(5-sqrt(5))/20 =0.138196601125010 c=0.816847572980459

(a, a, a) (c, a, a) (a, c, a) (a, a,

 c)
 (b, a, a) (b, b, a) (a, b, a)

(b, b, b) (a, b, b) (b, a, b) (b, b, a) (a, a, b) (b, a, b) (a, b, b)

For hexahedra the order of the Internal Gauss Points is this:

Internal coordinates: Internal coordinates:

a=0.577350269189626 a = 0.774596669241483

(-a,-a,-a) (a,-a,-a) (a, a,-a) (-a, a,-a)

 (-a,-a, a) (a,-a, a) (a, a, a) (-a, a, a)
 (0,-a,-a) (a, 0,-a) (0, a,-a) (-a, 0,-a)
 (-a,-a, 0) (a,-a, 0) (a, a, 0) (-a, a, 0)
 (0,-a, a) (a, 0, a) (0, a, a) (-a, 0, a)
 (0, 0,-a)
 (0,-a, 0) (a, 0, 0) (0, a, 0) (-a, 0, 0)

(-a,-a,-a) (a,-a,-a) (a, a,-a) (-a, a,-a) (0, 0, a)

(-a,-a, a) (a,-a, a) (a, a, a) (-a, a, a) (0, 0, 0)

For prisms the order of the Internal Gauss Points is this:

GiD v17

Copyright © 2024, GiD, CIMNE 112

Internal coordinates:

a=8.0*sqrt(2.0/15.0)/ 5.0 =0.

584237394672177

b=-2/3 =-0.666666666666666

c=2/5 = 0.4

(-a, -a, b)

(a, -a, b)

(a, a, b)

(-a, a, b)

(0.0, 0.0, c)

For pyramids the order of the Internal Gauss Points will be this:

The given natural coordinates for Gauss Points should range:

Internal coordinates:

a=1/6=0.166666666666666

b=4/6=0.666666666666666

c=1/2-1/(2sqrt(3)) =0.

211324865405187

d=1/2+1/(2sqrt(3))=0.

788675134594812

(a, a, c) (b, a, c) (a, b, c)

(a, a, d) (b, a, d) (a, b, d)

GiD v17

Copyright © 2024, GiD, CIMNE 113

Nodes not included

Nodes included

between 0.0 and 1.0 for Triangles, Tetrahedra and Prisms, and

between -1.0 and 1.0 for Quadrilaterals, Hexahedra and Pyramids.

Note: If the natural coordinates used are the internal ones, almost all the Results visualization possibilities will

have some limitations for tetrahedra and hexahedra with more than one gauss points. If the natural coordinates

are given, these limitations are extended to those elements with number_gauss_points_per_element not

included in the list written above.

 Nodes Included / Nodes not Included: are not case-sensitive, and are only necessary for gauss points on

Line elements which indicate whether or not the end nodes of the Line element are included in the

number_gauss_points_per_element count.

The default value is nodes not included

Note: By now, Natural Coordinates for line elements cannot be "Given"

 Natural Coordinates: Internal / Natural Coordinates: Given: are not case-sensitive, and indicate whether

the natural coordinates are calculated internally by GiD, or are given in the following lines. The natural

coordinates should be written for each line and gauss point.

 End with this tail:

End GaussPoints

where End GaussPoints: is not case-sensitive.

Here is an example of results on Gauss Points:

Internal Gauss points

The following Internal gauss points are automatically defined.

Results can use these names without explicitly define them with a GaussPoints / End GaussPoints statement.

GaussPoints "Board gauss internal" ElemType Triangle "board"

Number Of Gauss Points: 3

Natural Coordinates: internal

end gausspoints

GiD v17

Copyright © 2024, GiD, CIMNE 114

GP_POINT_1

GP_LINE_1

GP_TRIANGLE_1 GP_TRIANGLE_3 GP_TRIANGLE_6

GP_QUADRILATERAL_1 GP_QUADRILATERAL_4 GP_QUADRILATERAL_9

GP_TETRAHEDRA_1 GP_TETRAHEDRA_4 GP_TETRAHEDRA_10

GP_HEXAHEDRA_1 GP_HEXAHEDRA_8 GP_HEXAHEDRA_27

GP_PRISM_1 GP_PRISM_6

GP_PIRAMID_1 GP_PIRAMID_5

GP_SPHERE_1

GP_CIRCLE_1

Is is possible to use also the generic name GP_ELEMENT_1 to mean all kind of elements with 1 gauss point

(instead of the specific element GP_LINE_1, GP_TRIANGLE_1, etc.

Result Range Table

A Result Range Table is a customized legends for the Contour Ranges visualization and referenced by the

Results. Each ResultRangesTable consist of a list that associate a string or keyword to a range of result values.

If a Result Range Table is to be included, it must be defined before the Result which uses it.

Each Result Range Table is defined between the lines ResultRangesTable and End ResultRangesTable.

The structure is as follows and should:

 Begin with a header that follows this model:

ResultRangesTable "ResultsRangeTableName"

where ResultRangesTable: is not case-sensitive; "ResultsRangeTableName": is a name for the Result Ranges

Table, which will be used as a reference by the results that use this Result Ranges Table.

 Be followed by a list of Ranges, each of them defined as follows:

Min_Value - Max_Value: "Range Name"

where

Min_value : is the minimum value of the range, and may be void if the Max_value is given. If void, the

minimum value of the result will be used;

Max_value : is the maximum value of the range, and may be void if the Min_value is given. If void, the

maximum value of the result will be used;

"Range Name" : is the name of the range which will appear on legends and labels.

 End with this tail:

End ResultRangesTable

where

End ResultRangesTable: is not case-sensitive.

Here are several examples of results range tables:

GiD v17

Copyright © 2024, GiD, CIMNE 115

ResultRangesTable "My table"

all the ranges are min <= res < max except

the last range is min <= res <= max

- 0.3: "Less"

0.3 - 0.7: "Normal"

0.7 - : "Too much"

End ResultRangesTable

ResultRangesTable "My table"

0.3 - 0.7: "Normal"

0.7 - 0.9: "Too much"

End ResultRangesTable

ResultRangesTable "My table"

0.3 - 0.7: "Normal"

0.7 - : "Too much"

End ResultRangesTable

Ranges defined for the whole result:

Just a couple of ranges:

Or using the maximum of the result:

Result

Each Result block is identified by a Result header, followed by several optional properties: component names,

ranges table, and the result values, defined by the lines Values and End Values.

The structure is as follows and should:

 Begin with a result header that follows this model:

Result "result name" "analysis name" step_value result_type result_location "location name"

ComponentNames "component_name_1" ... "component_name_n"

Unit "unit_string"

The lines of ComponentNames and Unit are optional. If ComponentNames is missing the string of each

component (4 for a vector: x, y, z, modulus) are created automatically from the "result name", e.g. "result name"-

x, etc.

If Unit header line is missing then empty unit "" is assumed. Component names and units are currently used to

show some menu names and legends when drawing the result.

GiD v17

Copyright © 2024, GiD, CIMNE 116

where

Result: is not case-sensitive;

"result name": is a name for the Result, which will be used for menus; if the result name contains spaces it

should be written between "" or between {}.

"analysis name": is the name of the analysis of this Result, which will be used for menus; if the analysis

name contains spaces it should be written between "" or between {}.

step_value: is the value of the step inside the analysis "analysis name";

result_type: describes the type of the Result. It should be one of the following:

 Scalar: one component per result

 Vector: two, three or four components for result: x, y, z and (signed) modulus

 Matrix: three components for 2D matrices, six components for 3D matrices

 PlainDeformationMatrix: four components: Sxx, Syy, Sxy, Szz

 MainMatrix: the three main unitary eigen vectors (three components each) and three eigen values of the

matrix

 LocalAxes: three euler angles to specify the local axis

 ComplexScalar: two components to specify a + b · i

 ComplexVector: four components for 2D complex vectors, six or nine components for 3D vectors: rX iX rY iY

rZ iZ |r| |i| |vector| --> to specify the vector (rX + iX, rY + iY, rZ + iZ)

 ComplexMatrix: six components for 2D matrices (Sxx_real, Syy_real, Sxy_real, Sxx_imag, Syy_imag,

Sxy_imag), and twelve components for 3D matrices (Sxx_real, Syy_real, Szz_real, Sxy_real, Syz_real,

Sxz_real, Sxx_imag, Syy_imag, Szz_imag, Sxy_imag, Syz_imag, Sxz_imag)

result_location: is where the Result is located. It should be one of the following:

 OnNodes

 OnGaussPoints

 OnNurbsSurface

If the Result is OnGaussPoints, a "location name" should be entered;

"location name": is the name of the Gauss Points on which the Result is defined.

Note: Results can be visually grouped into 'folders' like in the following picture

GiD v17

Copyright © 2024, GiD, CIMNE 117

by just grouping of results using double slashes in the result names:

Result “Mechanical//Pressures//Water pressure” “Time analysis” 60

Result “Physical//Saturation” “Time analysis” 60 Scalar OnNodes

and so on...

 Be followed (optionally) by result properties:

ResultRangesTable "Name of a result ranges table"

ComponentNames "Name of Component 1", "Name of Component 2"

Unit "result unit"

where

ResultRangesTable "Name of a result ranges table": (optional) is not case-sensitive, followed by the name

of the previously defined Result Ranges Table, which will be used if the Contour Ranges result

visualization is chosen (see Result Range Table);

ComponentNames "Name of Component 1", "Name of Component 2": (optional) is not case-sensitive,

followed by the names of the components of the results which will be used in GiD. Missing components

names will be automatically generated. The number of Component Names are:

 One for a Scalar Result

 Three for a Vector Result

 Six for a Matrix Result

 Four for a PlainDeformationMatrix Result

 Six for a MainMatrix Result

 Three for a LocalAxes Result

 Two for a ComplexScalar Result

 Six or nine for ComplexScalar

Unit: the unit of the result.

GiD v17

Copyright © 2024, GiD, CIMNE 118

Values

1 1.155

2.9

3.955

End Values

 End with the result values:

Values

node_or_elem_number component_1_value ... component_n_value

...

node_or_elem_number component_1_value ... component_n_value

End Values

where

Values: is not case-sensitive, and indicates the beginning of the results values section;

The lines

node_or_elem_number component_1_value component_2_value

. . .

node_or_elem_number component_1_value component_2_value

are the values of the result at the related 'node_or_elem_number'.

The number of results values are limited thus:

If the Result is located OnNodes, they are limited to the number of nodes defined in ProjectName.post.msh.

If the Result is located OnGaussPoints "My GP", and if the Gauss Points "My GP" are defined for the mesh

"My mesh", the limit is the number of gauss points in "My GP" multiplied by the number of elements of the

mesh "My mesh".

For results in gauss points, each element must have 'ngauss' lines of results.

For example, if the number of gauss points is 3, then for an element, 3 lines of gauss point scalar result must

appear.

Holes are allowed in any result. The element nodes with no result defined will not be drawn, i.e. they will appear

transparent.

Result location:

OnNodes: results are defined on the nodes of the mesh. If nodes are shared between elements, as usual, then

the result field is continuous.

OnGaussPoints: results are defined in some locations of the mesh elements. Usually solvers calculate values

in some special locations named 'gauss points' for its numerical integration, then is natural to write the results

GiD v17

Copyright © 2024, GiD, CIMNE 119

on these locations. The results field is discontinuous between elements, then some options like calculate

streamlines are not allowed for this kind of result. Sometimes results are extrapolated and averaged on nodes

providing a continuous and smoothed result.

OnNurbsSurface: results are defined on the 'control points' of the NURBS surfaces.

These surfaces by default are the ones of preprocess, but could be overriden by an optional file <modelname.

post.geo> with the same format as the .geo preprocess file. Geometry format: Modelname.geo. In this case the .

post.geo file must contain only surfaces of NURBS type, and any volume.

Note: in case of have some result OnNurbsSurface the file header must be declared with version greater of

equal to 1.2

GiD Post Results File 1.2

The values block of a result OnNurbsSurface must have for each surface with results something like this:

surface_number

value(1)_component_1 ...value(1)_component_n

...

value(num_control_points_u)_component_1 ... value(num_control_points_u)_component_n

...

value(num_control_points_u_x_num_control_points_v)_component_1... value

(num_control_points_u_x_num_control_points_v)_component_n

where:

surface_number is the id of the surface (the same integer number that identify the surface in preprocess)

value is the real number of the result. It is compulsory to write the values for all control points of the surface, if

some control point doesn't has result it must have a NR value to represent 'no result'. This is typical of trimmed

NURBS surfaces, some control points far of trimmed part are not relevant and doesn't have any value.

It the whole surface doesn't has OnNurbsSurface result, it is not necessary to be written.

There is a model with isogeometric results OnNurbsSurface at: Examples\IGA_shell.gid\IGA_shell.post.res

The number of components for each Result Value are:

for Scalar results: one component result_number_i scalar_value

for Vector results: three components, with an optional fourth component for signed modules

result_number_i x_value y_value z_value result_number_i x_value y_value z_value signed_module_value

for Matrix results: three components (2D models) or six components (3D models)

2D: result_number_i Sxx_value Syy_value Sxy_value

3D: result_number_i Sxx_value Syy_value Szz_value Sxy_value Syz_value Sxz_value

for PlainDeformationMatrix results: four components result_number_i Sxx_value Syy_value Sxy_value

Szz_value

for MainMatrix results: twelve components result_number_i Si_value Sii_value Siii_value Vix_value

Viy_value Viz_value Viix_value Viiy_value Viiz_value Viiix_value Viiiy_value Viiiz_value

for LocalAxes results: three components describing the Euler angles result_number_i euler_ang_1_value

euler_ang_2_value euler_ang_3_value.

GiD v17

Copyright © 2024, GiD, CIMNE 120

GiD Post Results File 1.0

GaussPoints "Board gauss internal" ElemType Triangle "board"

Number Of Gauss Points: 3

Natural Coordinates: internal

end gausspoints

GaussPoints "Board gauss given" ElemType Triangle "board"

Number Of Gauss Points: 3

Natural Coordinates: Given

0.2 0.2

0.6 0.2

0.2 0.6

End gausspoints

GaussPoints "Board elements" ElemType Triangle "board"

Number Of Gauss Points: 1

Natural Coordinates: internal

end gausspoints

GaussPoints "Legs gauss points" ElemType Line

Number Of Gauss Points: 5

Nodes included

Natural Coordinates: Internal

End Gausspoints

Look for LocalAxesDef(EulerAngles) at Multiple values return commands for a more detailed explanation to

calculate axis from euler angles and vice-versa.

for ComplexScalar results: two components to specify a + b · i

for ComplexVector results: four components for 2D complex vectors, six or nine components for 3D

vectors: rX iX rY iY rZ iZ |r| |i| |vector| --> to specify the vector (rX + iX, rY + iY, rZ + iZ)

 End Values: is not case-sensitive, and indicates the end of the results values section.

Note: there is a special real value ((float)-3.40282346638528860e+38) that mean NO_RESULT, must not be

operated like the rest of real values (e.g. must be ignored to calculate an averaged value)

There is a Tcl proc IsResultNotDefined to check if a value is 'NO_RESULT' , and other proc

GetResultNotDefined that return this special value.

Note: For Matrix and PlainDeformationMatrix results, the Si, Sii and Siii components are calculated by GiD,

which represents the eigen values & vectors of the matrix results, and which are ordered according to the eigen

value.

Results example

Here is an example of results for the table in the previous example (see Mesh example):

GiD v17

Copyright © 2024, GiD, CIMNE 121

ResultRangesTable "My table"

el ultimo rango es min <= res <= max

- 0.3: "Less"

0.3 - 0.9: "Normal"

0.9 - 1.2: "Too much"

End ResultRangesTable

Result "Pressure" "Load Analysis" 1 Scalar OnGaussPoints "Board

elements"

Unit Pa

Values

5 0.00000E+00

6 0.20855E-04

7 0.35517E-04

8 0.46098E-04

9 0.54377E-04

10 0.60728E-04

11 0.65328E-04

12 0.68332E-04

13 0.69931E-04

14 0.70425E-04

15 0.70452E-04

16 0.51224E-04

17 0.32917E-04

18 0.15190E-04

19 -0.32415E-05

20 -0.22903E-04

21 -0.22919E-04

22 -0.22283E-04

End Values

Result "Displacements" "Load Analysis" 1 Vector OnNodes

ResultRangesTable "My table"

ComponentNames "X-Displ", "Y-Displ", "Z-Displ"

Unit m

Values

1 0.0 0.0 0.0

2 -0.1 0.1 0.5

3 0.0 0.0 0.8

4 -0.04 0.04 1.0

5 -0.05 0.05 0.7

6 0.0 0.0 0.0

7 -0.04 -0.04 1.0

8 0.0 0.0 1.2

9 -0.1 -0.1 0.5

10 0.05 0.05 0.7

11 -0.05 -0.05 0.7

12 0.04 0.04 1.0

13 0.04 -0.04 1.0

GiD v17

Copyright © 2024, GiD, CIMNE 122

14 0.05 -0.05 0.7

15 0.0 0.0 0.0

16 0.1 0.1 0.5

17 0.0 0.0 0.8

18 0.0 0.0 0.0

19 0.1 -0.1 0.5

End Values

Result "Gauss displacements" "Load Analysis" 1 Vector OnGaussPoints

"Board gauss given"

Unit m

Values

5 0.1 -0.1 0.5

0.0 0.0 0.8

0.04 -0.04 1.0

6 0.0 0.0 0.8

-0.1 -0.1 0.5

-0.04 -0.04 1.0

7 -0.1 0.1 0.5

0.0 0.0 0.8

-0.04 0.04 1.0

8 0.0 0.0 0.8

0.1 0.1 0.5

0.04 0.04 1.0

9 0.04 0.04 1.0

0.1 0.1 0.5

0.05 0.05 0.7

10 0.04 0.04 1.0

0.05 0.05 0.7

-0.04 0.04 1.0

11 -0.04 -0.04 1.0

-0.1 -0.1 0.5

-0.05 -0.05 0.7

12 -0.04 -0.04 1.0

-0.05 -0.05 0.7

0.04 -0.04 1.0

13 -0.1 0.1 0.5

-0.04 0.04 1.0

-0.05 0.05 0.7

14 -0.05 0.05 0.7

-0.04 0.04 1.0

0.05 0.05 0.7

15 0.1 -0.1 0.5

0.04 -0.04 1.0

0.05 -0.05 0.7

16 0.05 -0.05 0.7

0.04 -0.04 1.0

-0.05 -0.05 0.7

17 0.0 0.0 0.8

GiD v17

Copyright © 2024, GiD, CIMNE 123

-0.04 -0.04 1.0

-0.04 0.04 1.0

18 0.0 0.0 0.8

0.04 0.04 1.0

0.04 -0.04 1.0

19 0.04 -0.04 1.0

0.04 0.04 1.0

0.0 0.0 1.2

20 0.04 -0.04 1.0

0.0 0.0 1.2

-0.04 -0.04 1.0

21 -0.04 -0.04 1.0

0.0 0.0 1.2

-0.04 0.04 1.0

22 -0.04 0.04 1.0

0.0 0.0 1.2

0.04 0.04 1.0

End Values

Result "Legs gauss displacements" "Load Analysis" 1 Vector

OnGaussPoints "Legs gauss points"

Unit m

Values

1 -0.1 -0.1 0.5

-0.2 -0.2 0.375

-0.05 -0.05 0.25

0.2 0.2 0.125

0.0 0.0 0.0

2 0.1 -0.1 0.5

0.2 -0.2 0.375

0.05 -0.05 0.25

-0.2 0.2 0.125

0.0 0.0 0.0

3 0.1 0.1 0.5

0.2 0.2 0.375

0.05 0.05 0.25

-0.2 -0.2 0.125

0.0 0.0 0.0

4 -0.1 0.1 0.5

-0.2 0.2 0.375

-0.05 0.05 0.25

0.2 -0.2 0.125

0.0 0.0 0.0

End Values

Result group

GiD v17

Copyright © 2024, GiD, CIMNE 124

Results can be grouped into one block. These results belong to the same time step of the same analysis and

are located in the same place. So all the results in the group are nodal results or are defined over the same

gauss points set.

Each Result group is identified by a ResultGroup header, followed by the results descriptions and its optional

properties - such as components names and ranges tables, and the results values - all between the lines

Values and End values.

The structure is as follows and should:

 Begin with a header that follows this model

ResultGroup "analysis name" step_value my_location "location name"

where

ResultGroup: is not case-sensitive;

"analysis name": is the name of the analysis of this ResultGroup, which will be used for menus; if the

analysis name contains spaces it should be written between "" or between {}.

step_value: is the value of the step inside the analysis "analysis name";

my_location: is where the ResultGroup is located. It should be one of the following: OnNodes,

OnGaussPoints. If the ResultGroup is OnGaussPoints, a "location name" should be entered.

"location name": is the name of the Gauss Points on which the ResultGroup is defined.

 Be followed by at least one of the results descriptions of the group

ResultDescription "result name" my_result_type[:components_number]

ResultRangesTable "Name of a result ranges table"

ComponentNames "Name of Component 1", "Name of Component 2"

Unit "unit name"

where

ResultDescription: is not case-sensitive;

"result name": is a name for the Result, which will be used for menus; if the result name contains spaces it

should be written between "" or between {}.

my_type: describes the type of the Result. It should be one of the following: Scalar, Vector, Matrix,

PlainDeformationMatrix, MainMatrix, or LocalAxes. The number of components for each type is as follows:

One for a Scalar: the_scalar_value

Three for a Vector: X, Y and Z

Six for a Matrix: Sxx, Syy, Szz, Sxy, Syz and Sxz

Four for a PlainDeformationMatrix: Sxx_value, Syy, Sxy and Szz

Twelve for a MainMatrix: Si, Sii, Siii, ViX, ViY, ViZ, ViiX, ViiY, ViiZ, ViiiX, ViiiY and ViiiZ

Three for a LocalAxes: euler_ang_1, euler_ang_2 and euler_ang_3

Two for ComplexScalar: real and imag

Six for ComplexVector: x_real, x_imag, y_real, y_imag, z_real, z_imag

GiD v17

Copyright © 2024, GiD, CIMNE 125

ResultDescription "Displacements" Vector:2

Unit "m"

Twelve for ComplexMatrix: Sxx_real, Syy_real, Szz_real, Sxy_real, Syz_real, Sxz_real, Sxx_imag,

Syy_imag, Szz_imag, Sxy_imag, Syz_imag, Sxz_imag

Following the description of the type of the result, an optional modifier can be appended to specify the

number of components separated by a colon. It only makes sense to indicate the number of components

on vectors and matrices:

Vector:2, Vector:3 or Vector:4: which specify:

Vector:2: X and Y

Vector:3: X, Y and Z

Vector:4: X, Y, Z and |Vector| (module of the vector, with sign for some tricks)

The default (Vector) is 3 components per vector.

Matrix:3 or Matrix:6: which specify:

Matrix:3: Sxx, Syy and Sxy

Matrix:6: Sxx, Syy, Szz, Sxy, Syz and Sxz

The default (Matrix) is 6 components for matrices.

ComplexVector:4 or ComplexVector:6 which specify

ComplexVector:4: x_real, x_imag, y_real, y_imag

ComplexVector:6: x_real, x_imag, y_real, y_imag, z_real, z_imag

ComplexMatrix:3 or ComplexMatrix:6 which specify

ComplexMatrix:3: Sxx_real, Syy_real, Sxy_real, Sxx_imag, Syy_imag, Sxy_imag

ComplexMatrix:6: Sxx_real, Syy_real, Szz_real, Sxy_real, Syz_real, Sxz_real, Sxx_imag, Syy_imag,

Szz_imag, Sxy_imag, Syz_imag, Sxz_imag

Here are some examples:

GiD v17

Copyright © 2024, GiD, CIMNE 126

and where (optional properties)

 ResultRangesTable "Name of a result ranges table": (optional) is not case-sensitive, and is followed by the

name of the previously defined Result Ranges Table which will be used if the Contour Ranges result

visualization is chosen (see Result Range Table);

 ComponentNames "Name of Component 1", "Name of Component 2": (optional) is not case-sensitive, and is

followed by the names of the components of the results which will be used in GiD. The number of

Component Names are:

One for a Scalar Result

Three for a Vector Result

Six for a Matrix Result

Four for a PlainDeformationMatrix Result

Six for a MainMatrix Result

Three for a LocalAxes Result

 End with the results values:

Values

location_1 result_1_component_1_value result_1_component_2_value result_1_component_3_value

result_2_component_2_value result_2_component_2_value result_2_component_3_value

. . .

location_n result_1_component_1_value result_1_component_2_value result_1_component_3_value

result_2_component_2_value result_2_component_2_value result_2_component_3_value

End Values

where

Values: is not case-sensitive, and indicates the beginning of the results values section;

The lines

location_1 result_1_component_1_value result_1_component_2_value result_1_component_3_value

result_2_component_2_value result_2_component_2_value result_2_component_3_value

. . .

location_n result_1_component_1_value result_1_component_2_value result_1_component_3_value

result_2_component_2_value result_2_component_2_value result_2_component_3_value

are the values of the various results described with ResultDescription for each location. All the results

values for the location 'i' should be written in the same line 'i'.

The number of results values are limited thus:

ResultDescription "2D matrix" Matrix:3

ResultDescription "LineDiagramVector" Vector:4

Unit "Kg·m^2"

GiD v17

Copyright © 2024, GiD, CIMNE 127

If the Result is located OnNodes, they are limited to the number of nodes defined in ProjectName.

post.msh.

If the Result is located OnGaussPoints "My GP", and if the Gauss Points "My GP" are defined for the

mesh "My mesh", the limit is the number of gauss points in "My GP" multiplied by the number of

elements of the mesh "My mesh".

Holes are allowed. The element nodes with no result defined will not be drawn, i.e. they will appear

transparent.

The number of components for each ResultDescription are:

for Scalar results: one component result_number_i scalar_value

for Vector results: three components result_number_i x_value y_value z_value

for Matrix results: six components (3D models)3D: result_number_i Sxx_value Syy_value Szz_value

Sxy_value Syz_value Sxz_value

for PlainDeformationMatrix results: four components result_number_i Sxx_value Syy_value

Sxy_value Szz_value

for MainMatrix results: twelve components result_number_i Si_value Sii_value Siii_value Vix_value

Viy_value Viz_value Viix_value Viiy_value Viiz_value Viiix_value Viiiy_value Viiiz_value

for LocalAxes results: three components describing the Euler angles result_number_i

euler_ang_1_value euler_ang_2_value euler_ang_3_value

End Values: is not case-sensitive, and indicates the end of the results group values section.

Note: Vectors in a ResultGroup always have three components.

Note: Matrices in a ResultGroup always have six components.

Note: All the results of one node or gauss point should be written on the same line.

Note: For Matrix and PlainDeformationMatrix results, the Si, Sii and Siii components are calculated by GiD,

which represents the eigen values & vectors of the matrix results, and which are ordered according to the eigen

value.

Nodal ResultGroup example:

GiD v17

Copyright © 2024, GiD, CIMNE 128

GaussPoints "My Gauss" ElemType Triangle "2D Beam"

Number Of Gauss Points: 3

Natural Coordinates: Internal

End gausspoints

ResultGroup "Load Analysis" 1 OnGaussPoints "My Gauss"

ResultDescription "Gauss test" Scalar

ResultDescription "Vector Gauss" Vector

ResultDescription "Gauss Points Stresses" PlainDeformationMatrix

Values

1 1.05

-6.18601

2.1

-6.18601

3.15

-6.18601

2 1.2

-6.00727

2.25

ResultGroup "Load Analysis" 1 OnNodes

ResultDescription "Ranges test" Scalar

ResultRangesTable "My table"

ResultDescription "Scalar test" Scalar

ResultRangesTable "Pressure"

Unit "Kg·m^2"

ResultDescription "Displacements" Vector

ComponentNames "X-Displ", "Y-Displ" "Z-Displ"

Unit "m"

ResultDescription "Nodal Stresses" Matrix

ComponentNames "Sx", "Sy", "Sz", "Sxy", "Syz", "Sxz"

Values

1 0.0 0.000E+00 0.000E+00 0.000E+00 0.0 0.550E+00 0.972E-01

-0.154E+00 0.0 0.0 0.0

2 6.4e-01 0.208E-04 0.208E-04 -0.191E-04 0.0 0.506E+00 0.338E-01

-0.105E+00 0.0 0.0 0.0

3 0.0 0.355E-04 0.355E-04 -0.376E-04 0.0 0.377E+00 0.441E-02

-0.547E-01 0.0 0.0 0.0

...

115 7.8e-01 0.427E-04 0.427E-04 -0.175E-03 0.0 0.156E-01 -0.158E-01

-0.300E-01 0.0 0.0 0.0

116 7.4e-01 0.243E-04 0.243E-04 -0.189E-03 0.0 0.216E-02 -0.968E-02

-0.231E-01 0.0 0.0 0.0

End Values

Gauss Points ResultGroup example:

1 0 0.0 -19.4607 -1.15932 -1.43171

0 1 0.0 -19.4607 -1.15932 -1.43171

1 1 0.0 -19.4607 -1.15932 -1.43171

0 0 0.0 -20.6207 0.596461 5.04752

0 0 0.0 -20.6207 0.596461 5.04752

GiD v17

Copyright © 2024, GiD, CIMNE 129

-6.00727

-5.20742

-5.20742

-6.00727

3.3 2.0855e-05 -1.9174e-05 0.0 -20.6207 0.596461 5.04752

3 1.35 2.0855e-05 -1.9174e-05 0.0 -16.0982 -1.25991 2.15101

2.4 2.0855e-05 -1.9174e-05 0.0 -16.0982 -1.25991 2.15101

3.45 2.0855e-05

-5.20742

...

-1.9174e-05 0.0 -16.0982 -1.25991 2.15101

191 29.55

4.2781e-05

-0.00017594

0.0

-0.468376

12.1979

0.610867

3.51885

30.6 4.2781e-05 -0.00017594 0.0 -0.468376 12.1979 0.610867

3.51885

31.65

4.2781e-05

-0.00017594

0.0

-0.468376

12.1979

0.610867

3.51885

192 29.7 4.2781e-05 -0.00017594 0.0 0.747727 11.0624 1.13201

3.54303

30.75 4.2781e-05 -0.00017594 0.0 0.747727 11.0624 1.13201

3.54303

31.8 2.4357e-05 -0.00018974 0.0 0.747727 11.0624 1.13201

3.54303

End Values

Mesh format: ModelName.post.msh

Note: This postprocess mesh format requires GiD version 6.0 or higher.

Comments are allowed and should begin with a '#'. Blank lines are also allowed.

To enter the mesh names and result names in another encoding, just write # encoding your_encoding

for example:

encoding utf-8

Inside this file one or more meshes can be defined, each of them should:

 Begin with a header that follows this model:

MESH "mesh_name" dimension mesh_dimension Elemtype element_type Nnode element_num_nodes

where

 MESH, dimension, elemtype, nnode: are keywords that are not case-sensitive;

 "mesh_name": is an optional name for the mesh;

 mesh_dimension: is 2 or 3 according to the geometric dimension of the mesh;

GiD v17

Copyright © 2024, GiD, CIMNE 130

 element_type: describes the element type of this MESH. It should be one of the following; Point, Line,

Triangle, Quadrilateral, Tetrahedra, Hexahedra, Prism, Pyramid, Sphere, Circle ;

 element_num_nodes: the number of nodes of the element:

 Point: 1 node,

Point connectivity:

 Line: 2 or 3 nodes,

Line connectivities:

 Triangle: 3 or 6 nodes,

Triangle connectivities:

 Quadrilateral: 4, 8 or 9 nodes,

Quadrilateral connectivities:

 Tetrahedra, 4 or 10 nodes,

Tetrahedra, connectivities:

 Hexahedra, 8, 20 or 27 nodes.

GiD v17

Copyright © 2024, GiD, CIMNE 131

Hexahedra, connectivities:

 Prism: 6, 15 or 18 nodes,

Prism connectivities:

 Pyramid: 5 or 13 nodes,

Pyramid connectivities:

 Sphere: 1 node and a radius

 Circle: 1 node, a radius and a normal (x, y, z)

Note: For elements of order greater than linear, the connectivities must written in hierarchical order, i.e. the

vertex nodes first, then the middle ones.

 An optional line declaring the units of the mesh coordinates

Unit "mesh unit"

 An optional line describing its color with # color R G B A, where R, G, B and A are the Red, Green, Blue and

Alpha components of the color written in integer format between 0 and 255, or in floating (real) format

between 0.0 and 1.0. (Note that if 1 is found in the line it will be understood as integer, and so 1 above 255,

GiD v17

Copyright © 2024, GiD, CIMNE 132

#mesh of a table

rather than floating, and so 1 above 1.0). Alpha values represent the transparency of the mesh when this

visualization options is active, being 0.0 totally opaque and 1.0 totally transparent.

color* 127 127 0

In this way different colors can be specified for several meshes, taking into account that the # color line must be

between the MESH line and the Coordinates line.

 Be followed by the coordinates:

coordinates

1 0.0 1.0

3.0 . . .1000

-2.5 9.3 21.8

end coordinates

where

 the pair of keywords coordinates and end coordinates are not case-sensitive;

 between these keywords there should be the nodal coordinates of all the Meshes or the current one.

Note: If each MESH specifies its own coordinates, the node number should be unique, for instance, if MESH

"mesh one" uses nodes 1..100, and MESH "other mesh" uses 50 nodes, they should be numbered from 101 up.

 Be followed by the elements connectivity

elements

#el_num node_1 node_2 node_3 optional_material_number

1 1 2 3 215

. . .

1000 32 48 23 215

end elements

where

 the pair of keywords elements and end elements are not case-sensitive;

 between these keywords there should be the nodal connectivities for the my_type elements.

Note: On elements of order greater than linear, the connectivities must written in hierarchical order, i.e. the

vertex nodes first, then the middle ones;

 There is optionally a material number.

 For Sphere elements : Element_number Node_number Radius [optional_material_number]

 For Circle elements : Element_number Node_number Radius [optional_normal_x optional_normal_y

optional_normal_z] [optional_material_number]

If the normal is not written for circles, normal (0.0, 0.0, 1.0) will be used.

Mesh example

This example clarifies the description:

GiD v17

Copyright © 2024, GiD, CIMNE 133

MESH "board" dimension 3 ElemType Triangle Nnode 3

color 127 127 0

Coordinates

node number coordinate_x coordinate_y coordinate_z

1 -5 3 -3

2 -5 3 0

3 -5 0 0

4 -2 2 0

5 -1.66667 3 0

6 -5 -3 -3

7 -2 -2 0

8 0 0 0

9 -5 -3 0

10 1.66667 3 0

11 -1.66667 -3 0

12 2 2 0

13 2 -2 0

14 1.66667 -3 0

15 5 3 -3

16 5 3 0

17 5 0 0

18 5 -3 -3

19 5 -3 0

end coordinates

#we put both material in the same MESH,

#but they could be separated into two MESH

Elements

element

node_1

node_2

node_3

material_number

5 19 17 13 3

6 3 9 7 3

7 2 3 4 3

8 17 16 12 3

9 12 16 10 3

10 12 10 4 3

11 7 9 11 3

12 7 11 13 3

13 2 4 5 3

14 5 4 10 3

15 19 13 14 3

16 14 13 11 3

17 3 7 4 3

18 17 12 13 3

19 13 12 8 4

20 13 8 7 4

21 7 8 4 4

22 4 8 12 4

end elements

GiD v17

Copyright © 2024, GiD, CIMNE 134

MESH dimension 3 ElemType Line Nnode 2

Coordinates

#no coordinates then they are already in the first MESH

end coordinates

end elements

Elements

element

node_1

node_2

material_number

1 9 6 5

2 19 18 5

3 16 15 5

4 2 1 5

Group of meshes

If the same meshes are used for all the analyses, the following section can be skipped.

A new concept has been introduced in Postprocess: Group, which allows the postprocessing of problems which

require re-meshing or adaptive meshes, where the mesh change depending on the time step.

Normal operations, such as animation, displaying results and cuts, can be done over these meshes, and they

will be actualized when the selected analysis/step is changed, for example by means of View results -> Default

analysis/step

There are two ways to enter in GiD the diferent meshes defined por diferent steps or analysis:

1. define separate files for each mesh, for instance:

 binary format: mesh+result_1.post.bin, mesh+result_2.post.bin, mesh+result_3.post.bin, ...

 ascii format: mesh_1.post.msh + mesh_1.post.res, mesh_2.post.msh + mesh_2.post.res, ...

Note: the steps values (or analysis) should be diferent for each pair mesh+result.

To read them you can use File-->Open Multiple (see POSTPROCESS > Files menu from Reference Manual)

2. define on binary file or two ascii files (msh+res):

Meshes that belong to a group should be defined between the following highlighted commands

Group "group name"

MESH "mesh_name" dimension ...

...

end elements

MESH "another_mesh" ...

GiD v17

Copyright © 2024, GiD, CIMNE 135

...

end elements

end group

Results which refer to one of the groups should be written between these highlighted commands

OnGroup "group name"

Result "result name"

...

end values

...

end ongroup

Note: GiD versions 7.7.3b and later only allow one group at a time, i.e. only one group can be defined across

several steps of the analysis. Care should be taken so that groups do not overlap inside the same step/analysis.

For instance, an analysis which is 10 steps long:

For steps 1, 2, 3 and 4: an 'environment' mesh of 10000 elements and a 'body' mesh of 10000 elements are

used

MESH "environment"

... Coordinates

...

10000 ...

end elements

MESH "body" ...

...

20000 ...

end elements

and its results

GiD Post Results File 1.0

...

Results "result 1" "time" 1.0 ...

...

Results "result 1" "time" 2.0 ...

...

Results "result 1" "time" 3.0 ...

...

Results "result 1" "time" 4.0 ...

...

end values

For steps 5, 6, 7 and 8: with some refinement, the 'environment' mesh now being used has 15000 elements and

the 'body' mesh needs 20000 elements

MESH "environment"

...

Coordinates

GiD v17

Copyright © 2024, GiD, CIMNE 136

...

15000 ...

end elements

MESH "body" ...

...

35000 ...

end elements

and its results are

GiD Post Results File 1.0

...

Results "result 1" "time" 5.0 ...

...

Results "result 1" "time" 6.0 ...

...

Results "result 1" "time" 7.0 ...

...

Results "result 1" "time" 8.0 ...

...

end values

For steps 9 and 10: the last meshes to be used are of 20000 and 40000 elements, respectively

MESH "environment" ...

Coordinates

...

20000 ...

end elements

MESH "body" ...

...

60000 ...

end elements

and its results are

GiD Post Results File 1.0

...

Results "result 1" "time" 9.0 ...

...

Results "result 1" "time" 10.0 ...

...

end values

There are two ways to postprocess this:

 store the information in three pairs (or three binary files), thus:

 steps_1_2_3_4.post.msh and steps_1_2_3_4.post.msh (or steps_1_2_3_4.post.bin)

 steps_5_6_7_8.post.msh and steps_5_6_7_8.post.msh (or steps_5_6_7_8.post.bin)

 steps_9_10.post.msh and steps_9_10.post.msh (or steps_9_10.post.bin)

GiD v17

Copyright © 2024, GiD, CIMNE 137

and use the 'Open multiple' option (see POSTPROCESS > Files menu from Reference Manual) to selected the

six (or three) files; or

 write them in only two files (one in binary) by using the Group concept:

all_analysis.post.msh (note the group - end group pairs)

Group "steps 1, 2, 3 and 4"

MESH "environment" ...

...

MESH "body" ...

...

end group

Group "steps 5, 6, 7 and 8"

MESH "environment" ...

...

MESH "body" ...

...

end group

Group "steps 9 and 10"

MESH "environment" ...

...

MESH "body" ...

...

end group

and

all_analysis.post.res (note the ongroup - end ongroup pairs)

GiD Post Results File 1.0

OnGroup "steps 1, 2, 3 and 4"

...

Results "result 1" "time" 1.0 ...

...

Results "result 1" "time" 2.0 ...

...

Results "result 1" "time" 3.0 ...

...

Results "result 1" "time" 4.0 ...

...

end ongroup

OnGroup "steps 5, 6, 7 and 8"

...

Results "result 1" "time" 5.0 ...

...

Results "result 1" "time" 6.0 ...

...

Results "result 1" "time" 7.0 ...

...

Results "result 1" "time" 8.0 ...

...

GiD v17

Copyright © 2024, GiD, CIMNE 138

Multiple

postprocess files

cilinder-3D-3-sim2_001.10.post.bin

cilinder-3D-3-sim2_001.100.post.bin

cilinder-3D-3-sim2_001.101.post.bin

cilinder-3D-3-sim2_001.102.post.bin

cilinder-3D-3-sim2_001.11.post.bin

cilinder-3D-3-sim2_001.12.post.bin

end ongroup

OnGroup "steps 9 and 10"

...

Results "result 1" "time" 9.0 ...

...

Results "result 1" "time" 10.0 ...

...

end ongroup

and use the normal Open option.

List file format: ModelName.post.lst

New file *.post.lst can be read into GiD, postprocess. This file is automatically read when the user works in a

GiD project and changes from pre to postprocess.

This file can also be read with FileOpen

The file contains a list of the files to be read by the postprocess:

 The first line should contain one of these words:

 Single: just a single file (two for ascii files: one for mesh and another for results) is provided to be read (

see Open);

 Merge: several filenames are provided, one filename per line, which are to be merged inside GiD, for

instance when the files come from a domain decomposed simulation (see Merge... (only Postprocessing)

);

Example : Domain partition with a mesh constant along time.

 Multiple: the mesh will be considered variable along time. several filenames are provided, one filename

per line, which are read in GiD, (see Open multiple... (only Postprocessing));

Example : mesh refinement along time, where each step of the analysis has it's own mesh.

 next lines: the mesh and results files to be read, with one filename per line;

 following the postprocess mesh and result files, a list of graphs filenames can be provided so that GiD reads

them too; graphs files have the extension .grf;

 comment lines begin with the # character and blank lines are also admitted;

 file names may have absolute path names or relative to the list file location;

Example of a list file:

https://gidsimulation.atlassian.net/wiki/spaces/GRM/pages/2385546418/Open
https://gidsimulation.atlassian.net/wiki/spaces/GRM/pages/2385546436
https://gidsimulation.atlassian.net/wiki/spaces/GRM/pages/2385546433

GiD v17

Copyright © 2024, GiD, CIMNE 139

cilinder-3D-3-sim2_001.13.post.bin

cilinder-3D-3-sim2_001.14.post.bin

cilinder-3D-3-sim2_001.15.post.bin

cilinder-3D-3-sim2_001.16.post.bin

cilinder-3D-3-sim2_001.17.post.bin

...

cilinder-3D-3-sim2_001.99.post.bin

graph files

cilinder-3D-3-sim2_001.c2.1.grf

cilinder-3D-3-sim2_001.c2.2.grf

cilinder-3D-3-sim2_001.dem-branch.grf

cilinder-3D-3-sim2_001.dem-contacts.grf

cilinder-3D-3-sim2_001.dem-energy.grf

cilinder-3D-3-sim2_001.dem-stress.grf

File names may have absolute path names or relative to the list file location.

Graphs file format: ModelName.post.grf

The graph file that GiD uses is a standard ASCII file.

Every line of the file is a point on the graph with X and Y coordinates separated by a space.

Comment lines are also allowed and should begin with a '#'.

The title of the graph and the labels for the X and Y axes can also be configured with some 'special' comments:

 Title: If a comment line contains the Keyword 'Graph:' the string between quotes that follows this keyword

will be used as the title of the graph.

 Axes labels: The string between quotes that follows the keywords 'X:' and 'Y:' will be used as labels for the

X- and Y-axes respectively. The same is true for the Y axis, but with the Keyword 'Y:'.

 Axes units:

Example:

Graph: "Stresses"

X: "Szz-Nodal_Streess" Y: "Sxz-Nodal_Stress"

Units: Pa Pa

-3055.444 1672.365

-2837.013 5892.115

-2371.195 666.9543

-2030.643 3390.457

-1588.883 -4042.649

-1011.5 1236.958

End

GiD v17

Copyright © 2024, GiD, CIMNE 140

grep -a Result ./test.post.bin | awk ' BEGIN { RS ="\0" } ; { printf

"\n%s\n", $0 }' | grep -a Result | less

The file *.grf (which contains graphs) is read when changing from pre to post process and projectName.gid

/projectName.post.grf exists, or the postprocess files are read through File-->Open, then example.msh/res/bin

and example.grf are read.

The post list file (.post.lst) can also contain a list of graphs (.grf).

Binary format

The postprocess binary format is strongly based in the ascii format.

Each line of the Mesh and Result headers are stored as a 4-byte integer with the length of the string followed by

the 0-terminated string-line.

Mesh coordinates, connectivities and result values are stored as binary data, 4-byte integers and 4-byte floating

point values.

Finally the whole binary data file is compressed with z-lib.

You can debug the file following these steps:

1. rename the file for instance to .post.res.gz

2. un-compress it with your favourite compressor

3. you can 'edit' the file with emacs, notepad++ or any other editor

4. you can also look for the 'Result' header with CLI tools like:

Output example:

Result "PRESSURE" "Kratos" 1 Scalar OnNodes^Y

Result "VELOCITY" "Kratos" 1 Vector OnNodesE

Result "PRESSURE" "Kratos" 2 Scalar OnNodes^Y

Result "VELOCITY" "Kratos" 2 Vector OnNodesE

Result "PRESSURE" "Kratos" 3 Scalar OnNodes^Y

Result "VELOCITY" "Kratos" 3 Vector OnNodesE

...

Use the freely available GiDPost library to write post-process data files in ascii, binary or hdf5 format. Switching

between these formats only requires a couple of modifications. The source code and some pre-built binaries

can be downloaded from www.gidsimulation.com --> GiDPlus --> GidPost.

HDF5 format

In HDF5 the postprocess information is stored in several groups.

You can always look at the structure of GiDPost hdf5 format with the freely available HDFView utility of the

HDFGroup and which can be found at https://support.hdfgroup.org/products/java/.

Use the freely available GiDPost library to write post-process data files in ascii, binary or hdf5 format. Switching

https://www.gidsimulation.com/
https://support.hdfgroup.org/products/java/

GiD v17

Copyright © 2024, GiD, CIMNE 141

between these formats only requires a couple of modifications. The source code and some pre-built binaries

can be downloaded from www.gidsimulation.com --> GiDPlus --> GidPost.

HDF5 format for static meshes are supported since version 2.5 and for dynamic meshes since version 2.7.

For a static mesh model, i.e. a model whose mesh does not change along all time-steps of all analyses:

 Meshes: for each mesh of the model a numerated subfolder should be present. The properties of the mesh,

like element type, name, etc. (i.e. mesh header in ascii or binary format), are stored as attributes of this

numerated folder. Inside each numerated folder, the coordinates and elements connectivities. Numeration of

the coordinates are global and it's recommended that the numeration of the elements should be too.

 Results: for each result of the model a numerated subfolder should be present. The properties of the

results, like analysis name, step value, result type, etc. (i.e. result header in ascii or binary format), are

stored as attributes of this numerated folder. Inside each numerated folder, the result id's and result values

are stored.

 GaussPoints: for each gauss point referenced by the Results a numerated subfolder should be present with

its definition. The properties of the gauss point definition, like name, number of integration points inside the

element, etc. (i.e. gauss point header in ascii or binary format), are stored as attributes of this numerated

folder. Eventually, the numerated folder also contains the natural coordinates of the gauss points if GiD's

internal aren't used, i.e. they are defined by the simulation program.

 ResultRangesTable: list of customized legends for the Contour Ranges visualization and referenced by the

Results. Each ResultRangesTable is stored in separated numerated folders and consist of a list that

associate a string or keyword to a range of result values.

This figure shows an example of a static mesh model generated by the testc.exe program of the GiDPost library:

For a dynamic mesh model, i.e. a model whose mesh changes at each time-step, group of time-steps or at

each analysis step, a new group should be used:

 MeshGroup: for each mesh change a new enumerated MeshGroup group should be used. This group

contains the Meshes and the Results that belong together in each time-step, group of time-steps or at each

https://www.gidsimulation.com/

GiD v17

Copyright © 2024, GiD, CIMNE 142

analysis step. Note that the Results on each MeshGroup should be defined in different time-steps/analyses

so that GiD can show them to the user. Inside each MeshGroup the coordinates i

Following figure shows an example of a dynamic mesh model with two time-steps, each one of them with its

own mesh + results definition:

GiD v17

Copyright © 2024, GiD, CIMNE 143

TCL AND TK EXTENSION

This chapter looks at the advanced features of GiD in terms of expandability and total control. Using the Tcl/Tk

extension you can create script files to automatize any process created with GiD. With this language new

windows and functionalities can be added to the program.

For more information about the Tcl/Tk programming language itself, look at https://www.tcl.tk/

If you are going to use a Tcl file, it must be located in the Problem Type directory and be called

problem_type_name.tcl.

https://www.tcl.tk/

GiD v17

Copyright © 2024, GiD, CIMNE 144

Event procedures

A 'Event procedure' is a Tcl procedure that is invoked from GiD when doing some actions. I allows developers

to interleave its code with the GiD flow.

The structure of problem_type_name.tcl can optionally implement some of these Tcl prototype procedures (and

other user-defined procedures). The procedures listed below are automatically called by GiD. Their syntax

corresponds to standard Tcl/Tk language:

Note: is is possible to get the ordered list of Tcl events with the procedure GiD_Info events

Note: default values are category==GENERAL and propietary==gid

To be called a Tcl procedure must be previously registered, using

GiD_RegisterEvent <event_name> <procedure> ?<category>? ?<propietary>?

<event_name> must be a valid event, like GiD_Event_InitProblemtype

<procedure> is the name of our procedure, with appropiated prototype of arguments

Can know the expected arguments with the command GiD_Info events -args <event_name>, or reading this

documentation.

Avoid to use as procedure name the event_name, to avoid conflicts. It is recommended for example use a prefix

or namespace that suggest that is defined by our own problemtype, etc.)

<category>: GENERAL, PROBLEMTYPE, PLUGIN (default==GENERAL)

used for a better classification.

<propietary>: the name of our problemtype, etc. (according with category, default == gid)

GiD defined events are of category=GENERAL and propietary=gid, these are the default values in case of

missing parameters

The category and propietary allow automatically unregister events when unloading a problemtype or plugin.

GiD v17

Copyright © 2024, GiD, CIMNE 145

GiD_UnRegisterEvent <event_name> <procedure> ?<category>? ?<propietary>?

To unregister an event, previously registered with GiD_RegisterEvent

GiD_UnRegisterEvents ?<category>? ?<propietary>?

To unregister all events of a category and propietary

GiD_GetRegisteredEventProcs <event_name> ?<category>? ?<propietary>?

To get the list of procedures registered for the event, category and propietary

GiD_GetRegisteredEventProcsAll <event_name>

To get all procedures registered for an event, without take into accoult the category and propietary.

GiD_GetIsRegisteredEvent <event_name>

Return 1 if there is some procedure registered for the event, 0 else

GiD_GetIsRegisteredEventProc <event_name> <procedure> ?<category>? ?<propietary>?

Return 1 if this procedure is registered for the event, 0 else

RaiseEvent_Registered <event_name> <args>

To raise an event from Tcl scripting (providing the appropriated arguments)

Events preprocess

 New

GiD_Event_AfterNewGIDProject

 Read

GiD_Event_BeforeReadGIDProject

GiD_Event_AfterReadGIDProject

GiD_Event_AfterReadGIDProjectWithError

GiD_Event_AfterInsertGIDProject

GiD_Event_AfterSetProjectName

GiD_Event_BeforeOpenFile

GiD_Event_AfterOpenFile

 Write

GiD_Event_BeforeSaveGIDProject

GiD_Event_AfterSaveGIDProject

GiD_Event_BeforeSaveAsGIDProject

GiD_Event_AfterSaveAsGIDProject

GiD_Event_AfterSaveFile

GiD_Event_AfterSaveImage

 Geometry

GiD_Event_AfterCreatePoint

GiD_Event_AfterCreateLine

GiD_Event_AfterCreateSurface

GiD_Event_AfterCreateVolume

GiD_Event_BeforeDeletePoint

GiD_Event_BeforeDeleteLine

GiD_Event_BeforeDeleteSurface

GiD_Event_BeforeDeleteVolume

GiD_Event_AfterRenumber

GiD_Event_AfterRepair

GiD v17

Copyright © 2024, GiD, CIMNE 146

proc GiD_Event_AfterNewGIDProject {} {

}

 Copy / Move

GiD_Event_BeforeCopy

GiD_Event_AfterCopy

GiD_Event_BeforeMove

GiD_Event_AfterMove

 Mesh

GiD_Event_BeforeMeshGeneration

GiD_Event_AfterMeshGeneration

GiD_Event_BeforeMeshErrors

GiD_Event_BeforeMeshProgress

GiD_Event_MeshProgress

GiD_Event_AfterMeshProgress

GiD_Event_AfterChangeMesh

GiD_Event_AfterRenumber

 Dimensions

GiD_Event_BeforeDeleteDimension

GiD_Event_AfterCreateDimension

 Layers

GiD_Event_AfterCreateLayer

GiD_Event_AfterRenameLayer

GiD_Event_BeforeDeleteLayer

GiD_Event_AfterDeleteLayer

GiD_Event_AfterChangeLayer

GiD_Event_AfterChangeParentLayer

GiD_Event_AfterSetLayerToUse

GiD_Event_AfterSendToLayer

GiD_Event_AfterChangeLayersOrSets

 Groups

GiD_Event_AfterCreateGroup

GiD_Event_AfterRenameGroup

GiD_Event_BeforeDeleteGroup

GiD_Event_AfterDeleteGroup

GiD_Event_AfterChangeGroup

GiD_Event_AfterChangeParentGroup

New

GiD_Event_AfterNewGIDProject: will be called just after start a new GiD project.

Read

GiD_Event_BeforeReadGIDProject: will be called just before read a GiD project. It receives the argument

filename, which is the path of the model folder, without the .gid extension.

If it returns -cancel- then the reading is cancelled.

GiD v17

Copyright © 2024, GiD, CIMNE 147

proc GiD_Event_AfterReadGIDProject { filename } {

}

proc GiD_Event_AfterSetProjectName { name } {

}

proc GiD_Event_AfterReadGIDProjectWithError { project_filename

error_string } {

}

proc GiD_Event_AfterInsertGIDProject { filename } {

}

proc GiD_Event_BeforeOpenFile { filename format } {

...body...

set value ...

return $value

}

GiD_Event_AfterReadGIDProject: will be called just after read a GiD project. If errors appear while reading

the GiD project, the function is not called. It receives the argument filename, which is the path of the model

folder, without the .gid extension.

GiD_Event_AfterReadGIDProjectWithError: will be called after reading a GiD project with errors. It receives

the argument procjetfilename, which is the path of the model folder, without the .gid extension and an

error_string describing the error found.

GiD_Event_AfterInsertGIDProject: will be called just after insert a GiD project into the current one. It receives

the argument filename, which is the path of the model folder, without the .gid extension.

GiD_Event_AfterSetProjectName:

GiD_Event_BeforeOpenFile:

proc GiD_Event_BeforeReadGIDProject { filename } {

...body...

set value ...

return $value

}

GiD v17

Copyright © 2024, GiD, CIMNE 148

proc GiD_Event_AfterOpenFile { filename format error } {

}

proc GiD_Event_BeforeSaveGIDProject { modelname } {

... body ...

set value ...

return $value

}

proc GiD_Event_AfterSaveGIDProject { modelname } {

}

proc GiD_Event_BeforeSaveAsGIDProject { old_modelname new_modelname } {

}

 filename: the full name of the file to be read;

 format: ACIS_FORMAT, CGNS_FORMAT, DXF_FORMAT, GID_BATCH_FORMAT,

GID_GEOMETRY_FORMAT, GID_MESH_FORMAT, IGES_FORMAT, NASTRAN_FORMAT,

PARASOLID_FORMAT, RHINO_FORMAT, SHAPEFILE_FORMAT, STL_FORMAT, VDA_FORMAT,

VRML_FORMAT or 3DSTUDIO_FORMAT.

If it returns -cancel- then the reading is cancelled.

GiD_Event_AfterOpenFile: will be called after a geometry or mesh file is read inside GiD. It receives as

arguments:

 filename: the full name of the file that has been read;

 format: ACIS_FORMAT, CGNS_FORMAT, DXF_FORMAT, GID_BATCH_FORMAT,

GID_GEOMETRY_FORMAT, GID_MESH_FORMAT, IGES_FORMAT, NASTRAN_FORMAT,

PARASOLID_FORMAT, RHINO_FORMAT, SHAPEFILE_FORMAT, STL_FORMAT, VDA_FORMAT,

VRML_FORMAT or 3DSTUDIO_FORMAT.

 error: boolean 0 or 1 to indicate an error when reading.

Write

GiD_Event_BeforeSaveGIDProject / GiD_Event_AfterSaveGIDProject will be called just before save a GiD

project. It receives the argument modelname which is the path of the model folder, without the .gid extension.

If GiD_Event_BeforeSaveGIDProject returns -cancel- then the writing is cancelled.

GiD_Event_BeforeSaveAsGIDProject: will be called before GiD save its information in the new_filename

location, when the old_filename has not been deleted if is the same as the new_filename

If returns -cancel- then the writing is cancelled.

GiD v17

Copyright © 2024, GiD, CIMNE 149

proc GiD_Event_AfterSaveImage { filename format } {

}

proc GiD_Event_AfterSaveAsGIDProject { old_modelname new_modelname } {

}

proc GiD_Event_AfterCreatePoint { num } {

}

proc GiD_Event_AfterCreateLine { num } {

}

proc GiD_Event_AfterCreateSurface { num } {

}

proc GiD_Event_AfterCreateVolume { num } {

}

GiD_Event_AfterSaveAsGIDProject: will be called after GiD save its information in the new_filename location,

when this folder and the model files exists, and provide the old_filename argument for example to allow to copy

extra data, like result files handled by the problemtype.

GiD_Event_AfterSaveFile: will be called after a geometry or mesh file is exported to a file. It receives as

arguments:

 filename: the full name of the file that has been written;

 format: ACIS_FORMAT, DXF_FORMAT, GID_GEOMETRY_FORMAT, GID_MESH_FORMAT,

IGES_FORMAT, RHINO_FORMAT, AMELET_FORMAT, KML_FORMAT.

 error: boolean 0 or 1 to indicate an error when writing.

GiD_Event_AfterSaveImage: will be called after a picture or model is saved to disk. It receives as arguments:

 filename: the full name of the file that has been saved;

 format: eps, ps, tif, bmp, ppm, gif, png, jpg, tga, wrl

Geometry

GiD_Event_AfterCreatePoint/Line/Surface/Volume: will be called just after create the entity, providing its

number

proc GiD_Event_AfterSaveFile { filename format error } {

}

GiD v17

Copyright © 2024, GiD, CIMNE 150

proc GiD_Event_AfterRenumber { useof leveltype renumeration } {

}

proc GiD_Event_BeforeDeletePoint { num } {

}

proc GiD_Event_BeforeDeleteLine { num } {

}

proc GiD_Event_BeforeDeleteSurface { num } {

}

proc GiD_Event_BeforeDeleteVolume { num } {

}

proc GiD_Event_AfterRepair { } {

return [list $num_repaired $message]

}

GiD_Event_BeforeDeletePoint/Line/Surface/Volume: will be called just before delete the entity, providing its

number

GiD_Event_AfterRenumber: will be called after renumber the geometry or the mesh (to update for example

fields storing entity identifiers)

 useof : could be GEOMETRYUSE or MESHUSE

 leveltype: the kind of entity that was renumbered.

Geometry: must be ALL_LT.

Mesh: could be NODE_LT or ELEM_LT.

 renumeration:

Geometry: four sublists with the old and new idenfiers for points, lines, surfaces and volumes.

Mesh: a sublist with the old and new identifiers for nodes or elements.

GiD_Event_AfterRepair: will be called after repair (the geometry and mesh), to do extra tasks at scripting level

It must return a list of the items: num_repaired and message

 num_repaired: integer, the number of repaired things

 message: a translated message to be shown to the used after the repair

Copy / Move

GiD_Event_BeforeCopy/Move GiD_Event_AfterCopy/Move: will be called just before or after use copy or

move tools.

GiD v17

Copyright © 2024, GiD, CIMNE 151

proc GiD_Event_BeforeCopy { useof transformation error } {

}

proc GiD_Event_AfterCopy { useof transformation error } {

}

proc GiD_Event_BeforeMove { useof transformation error } {

}

proc GiD_Event_AfterMove { useof transformation error } {

}

proc GiD_Event_BeforeMeshGeneration { element_size } {

...body...

set value ...

return $value

}

proc GiD_Event_AfterMeshGeneration { fail } {

}

useof : could be GEOMETRYUSE or MESHUSE

transformation : could be ROTATION, TRANSLATION, MIRROR, SCALE, OFFSET, SWEEP or ALIGN

Mesh

GiD_Event_BeforeMeshGeneration: will be called before the mesh generation. It receives the mesh size

desired by the user as the element_size argument. This event can typically be used to assign some condition

automatically.

If it returns -cancel- the mesh generation is cancelled.

GiD_Event_AfterMeshGeneration: will be called after the mesh generation. It receives as its fail argument a

true value if the mesh is not created.

GiD_Event_BeforeMeshErrors: will be called is the mesh generation fail, just before show the errors window.

filename is the full path to the file that has information about the meshing errors, but for internal meshers,

filename is "" and the error messages are stored in a Tcl global array, and can be obtained with the Tcl proc

MeshErrors::GetMessages

if filename is not "" then its content can be easily get with set data [GidUtils::ReadFile $filename]

Retuning -cancel- the standard 'Mesh error window' won't be opened

GiD v17

Copyright © 2024, GiD, CIMNE 152

proc GiD_Event_BeforeMeshErrors { filename } {

if { $filename == "" } {

set messages [MeshErrors::GetMessages]

} else {

set messages [GidUtils::ReadFile $filename]

}

...body...

set value ...

return $value

}

proc GiD_Event_BeforeMeshProgress { num_other num_lines num_surfaces

num_volumes } {

}

proc GiD_Event_MeshProgress { percent_total percent_other percent_lines

percent_surfaces percent_volumes num_nodes num_elements } {

}

proc GiD_Event_AfterMeshProgress { } {

}

proc GiD_Event_AfterChangeMesh { num_nodes num_elements } {

}

GiD_Event_BeforeMeshProgress: to start some progressbar, provide an approximated information of the

amount of entities to be meshed

GiD_Event_MeshProgress: to update some progressbar, provide approximated percents of the progress

GiD_Event_AfterMeshProgress: to end some progressbar

GiD_Event_AfterChangeMesh:

GiD_Event_AfterRenumber: will be called after renumber the geometry or the mesh (to update for example

fields storing entity identifiers)

 useof : could be GEOMETRYUSE or MESHUSE

 leveltype: the kind of entity that was renumbered.

Geometry: must be ALL_LT.

Mesh: could be NODE_LT or ELEM_LT.

GiD v17

Copyright © 2024, GiD, CIMNE 153

proc GiD_Event_AfterRenumber { useof leveltype renumeration } {

}

proc GiD_Event_AfterRenameLayer { oldname newname } {

}

proc GiD_Event_BeforeDeleteDimension { num } {

}

proc GiD_Event_AfterCreateDimension { num } {

}

proc GiD_Event_BeforeDeleteLayer { name } {

...body...

set value ...

return $value

}

renumeration:

Geometry: four sublists with the old and new idenfiers for points, lines, surfaces and volumes.

Mesh: a sublist with the old and new identifiers for nodes or elements.

Dimensions

GiD_Event_BeforeDeleteDimension: will be called just before delete the entity, providing its number

GiD_Event_AfterCreateDimension: will be called just after create the entity, providing its number

Layers

GiD_Event_AfterCreateLayer: will be called just after create the layer 'name'

proc GiD_Event_AfterCreateLayer { name } {

}

GiD_Event_AfterRenameLayer: will be called just after the layer 'oldname' has been renamed to 'newname'

GiD_Event_BeforeDeleteLayer / GiD_Event_AfterDeleteLayer: will be called just before /after delete the

layer 'name'

If GiD_Event_BeforeDeleteLayer returns -cancel- the layer deletion is cancelled.

GiD v17

Copyright © 2024, GiD, CIMNE 154

proc GiD_Event_AfterSendToLayer { name } {

}

proc GiD_Event_AfterChangeLayer { name property } {

}

proc GiD_Event_AfterChangeParentLayer { oldname newname } {

}

proc GiD_Event_AfterSetLayerToUse { name } {

}

proc GiD_Event_AfterChangeLayersOrSets { num_sets num_off num_back

num_transparent } {

}

proc GiD_Event_AfterCreateGroup { name } {

}

proc GiD_Event_AfterRenameGroup { oldname newname } {

}

GiD_Event_AfterChangeLayer: will be called just after change some property of the layer 'name'

property' could be ON, OFF, FROZEN, UNFROZEN, ALPHA <AAA>, COLOR <RRRGGGBBB?AAA?>

with RRR, GGG, BBB, AAA from 0 to 255

GiD_Event_AfterChangeParentLayer: will be called when moving a layer to another parent of the tree.

GiD_Event_AfterSetLayerToUse: will be called when setting 'name' as current layer to use

GiD_Event_AfterSendToLayer: will be called when changing entities to the layer 'name'

GiD_Event_AfterChangeLayersOrSets:

Groups

GiD_Event_AfterCreateGroup: similar to layer commands

GiD_Event_AfterRenameGroup:

GiD v17

Copyright © 2024, GiD, CIMNE 155

proc GiD_Event_BeforeDeleteGroup { name } {

...body...

set value ...

return $value

}

proc GiD_Event_AfterChangeGroup { name property } {

}

proc GiD_Event_AfterChangeParentGroup { oldname newname } {

}

GiD_Event_BeforeDeleteGroup: will be called just before delete the group 'name'

If it returns -cancel- the deletion is cancelled.

GiD_Event_AfterDeleteGroup:

proc GiD_Event_AfterDeleteGroup { name } {

}

GiD_Event_AfterChangeGroup: property could be color, visible, state, allowed_types

GiD_Event_AfterGroupParentGroup: will be called when moving a group to another parent of the tree.

Events problemtype

 Start / End

GiD_Event_InitProblemtype

GiD_Event_BeforeInitProblemtype

GiD_Event_EndProblemtype

GiD_Event_AfterChangeProblemtype

GiD_Event_AfterSetProblemtypeName

 Read / Write

GiD_Event_LoadModelSPD

GiD_Event_LoadProblemtypeSPD

GiD_Event_SaveModelSPD

 Transform

GiD_Event_BeforeTransformProblemType

GiD_Event_AfterTransformProblemType

 Materials

GiD v17

Copyright © 2024, GiD, CIMNE 156

proc GiD_Event_InitProblemtype { dir } {

}

proc GiD_Event_BeforeInitProblemtype { dir } {

}

GiD_Event_AfterCreateMaterial

GiD_Event_AfterRenameMaterial

GiD_Event_BeforeDeleteMaterial

GiD_Event_AfterChangeMaterial

GiD_Event_AfterAssignMaterial

 Conditions

GiD_Event_AfterCreateCondition

GiD_Event_BeforeDeleteCondition

GiD_Event_AfterChangeCondition

 Intervals

GiD_Event_AfterCreateInterval

GiD_Event_BeforeDeleteInterval

GiD_Event_AfterDeleteInterval:

GiD_Event_AfterSetIntervalToUse

 Units

GiD_Event_AfterChangeModelUnitSystem

 Calculation file

GiD_Event_BeforeWriteCalculationFile

GiD_Event_AfterWriteCalculationFile

GiD_Event_SelectOutputFilenames

 Run

GiD_Event_SelectGIDBatFile

GiD_Event_BeforeCalculate

GiD_Event_BeforeRunCalculation

GiD_Event_AfterRunCalculation

Start / End

GiD_Event_InitProblemtype / GiD_Event_BeforeInitProblemtype: will be called when the problem type is

selected. It receives the dir argument, which is the absolute path to the problem_type_name.gid directory, which

can be useful inside the routine to locate some alternative files.

Note: InitGIDProject is a deprecated alias of GiD_Event_InitProblemtype

GiD_Event_EndProblemtype: will be called when this project is about to be closed. It has no arguments.

GiD v17

Copyright © 2024, GiD, CIMNE 157

proc GiD_Event_EndProblemtype {} {

}

proc GiD_Event_AfterChangeProblemtype { oldproblemtype newproblemtype }

{

}

proc GiD_Event_AfterSetProblemtypeName { name } {

}

proc GiD_Event_LoadModelSPD { filespd } {

}

proc GiD_Event_LoadProblemtypeSPD { filespd } {

}

Note: EndGIDProject is a deprecated alias of GiD_Event_EndProblemtype

GiD_Event_AfterChangeProblemtype

GiD_Event_AfterSetProblemtypeName

Read / Write

GiD_Event_LoadModelSPD: will be called when a GiD project is loaded. It receives the argument filespd,

which is the path of the file which is being opened, but with the extension .spd (specific problemtype data). This

path is tipically the file of the model where the problemtype store its own data.

Note: GiD_Event_AfterLoadGIDProject Will be called when a GiD project is loaded, but not when a problem

type is loaded, then could be used instead of GiD_Event_LoadModelSPD as an oportunity to load the

problemtype data of the model.

GiD_Event_LoadProblemtypeSPD: will be called when a problem type is loaded. It receives the argument

filespd, which is the path of the file which is being opened, but with the extension .spd (specific problemtype

data).

This path is tipically the file of the problemtype where the problemtype define its own data.

Note: LoadGIDProject is a deprecated confusing event, that is called in both cases: GiD_Event_LoadModelSPD

and GiD_Event_LoadProblemtypeSPD

GiD_Event_SaveModelSPD: will be called when the currently open file is saved to disk. It receives the

argument filespd, which is the path of the file being saved, but with the extension .spd (specific problemtype

data). This path can be useful if you want to write specific information about the problem type in a new file.

GiD v17

Copyright © 2024, GiD, CIMNE 158

proc GiD_Event_SaveModelSPD { filespd } {

}

proc GiD_Event_BeforeTransformProblemType { file oldproblemtype

newproblemtype } {

...body...

set value ...

return $value

}

proc GiD_Event_AfterTransformProblemType { file oldproblemtype

newproblemtype messages } {

...body...

set value ...

return [list $value $messages]

}

Note: SaveGIDProject is a deprecated event alias of GiD_Event_SaveModelSPD

Transform

GiD_Event_BeforeTransformProblemType: will be called just before transforming a model from a problem

type to a new problem type version.

If it returns -cancel- as a value then the transformation will not be invoked.

file: the name of the model to be transformed;

oldproblemtype: the name of the previous problem type;

newproblemtype: the name of the problem type to be transformed.

GiD_Event_AfterTransformProblemType: will be called just after transforming a model from a problem type to

a new problem type version.

It must return a list of the items: value and messages

value 1 if there were model changes done in this procedure, 0 else.

If it returns -cancel- as a special value, then the transformation messages won't be shown.

file: the name of the model to be transformed;

oldproblemtype: the name of the previous problem type;

newproblemtype: the name of the problem type to be transformed.

messages: explains the transforming operations done.

Materials

GiD_Event_AfterCreateMaterial: will be called just after create the material 'name'

proc GiD_Event_AfterCreateMaterial { name } {

}

GiD v17

Copyright © 2024, GiD, CIMNE 159

proc GiD_Event_AfterRenameMaterial { oldname newname } {

}

proc GiD_Event_BeforeDeleteMaterial { name } {

...body...

set value ...

return $value

}

proc GiD_Event_AfterChangeMaterial { name changedfields } {

}

proc GiD_Event_AfterAssignMaterial { name leveltype } {

}

proc GiD_Event_AfterCreateCondition { name } {

}

GiD_Event_AfterRenameMaterial: will be called just after the mateial 'oldname' has been renamed to

'newname'

GiD_Event_BeforeDeleteMaterial: will be called just before delete the material 'name'

If it returns -cancel- the material deletion is cancelled.

GiD_Event_AfterChangeMaterial: will be called just after change some field value of the material 'name'.

changedfields is a list with the index of the changed fields (index starting from 1)

GiD_Event_AfterAssignMaterial: will be called just after assign or unassign the material of some entities.

 name is the name of the new material. If it is "" then the material has been unassigned.

 leveltype: is the kind of entity, if could be:

For geometry: POINT_LT, LINE_LT, SURFACE_LT,VOLUME_LT

For mesh: ELEM_LT.

Conditions

GiD_Event_AfterCreateCondition: will be called just after create the condition 'name'

GiD_Event_BeforeDeleteCondition: will be called just before delete the condition 'name'

If it returns -cancel- the material condition is cancelled.

GiD v17

Copyright © 2024, GiD, CIMNE 160

proc GiD_Event_AfterCreateInterval { interval_id } {

}

proc GiD_Event_AfterChangeCondition { name changedfields } {

}

proc GiD_Event_BeforeDeleteInterval { interval_id } {

...body...

set value ...

return $value

}

proc GiD_Event_AfterDeleteInterval { interval_id } {

}

proc GiD_Event_AfterSetIntervalToUse { interval_id } {

}

GiD_Event_AfterChangeCondition: will be called just after change some field value of the condition 'name'.

changedfields is a list with the index of the changed fields (index starting from 1)

Intervals

GiD_Event_AfterCreateInterval: will be called just after a new interval is created, providing its integer id

GiD_Event_BeforeDeleteInterval: will be called just before a interval is deleted, providing its integer id

If it returns -cancel- the interval deletion is cancelled.

GiD_Event_AfterDeleteInterval: will be called just after a interval is deleted, providing its integer id

GiD_Event_AfterSetIntervalToUse: will be called just after a the current interval is changed, providing its

integer id

proc GiD_Event_BeforeDeleteCondition { name } {

...body...

set value ...

return $value

}

GiD v17

Copyright © 2024, GiD, CIMNE 161

proc GiD_Event_AfterChangeModelUnitSystem { old_unit_system

new_unit_system } {

}

proc GiD_Event_BeforeWriteCalculationFile { file } {

...body...

set value ...

return $value

}

proc GiD_Event_AfterWriteCalculationFile { file error } {

...body...

set value ...

return $value

}

proc GiD_Event_SelectOutputFilenames { filenames } {

...

return $new_filenames

}

Units

GiD_Event_AfterChangeModelUnitSystem: will be raised when user change the current unit system or the

declared model length units.

old_system and new_system are the names of the units systems before and after the change respectivelly.

They could be empty "" or the same (e.g. changing the model length units)

Calculation file

GiD_Event_BeforeWriteCalculationFile: will be called just before writing the calculation file. It is useful for

validating some parameters.

If it returns -cancel- as a value then nothing will be written.

file: the name of the output calculation file.

GiD_Event_AfterWriteCalculationFile: will be called just after writing the calculation file and before the

calculation process. It is useful for renaming files, or cancelling the analysis.

If it returns -cancel- as a value then the calculation is not invoked.

file: the name of the output calculation file error: an error code if there is some problem writing the output

calculation file.

GiD_Event_SelectOutputFilenames: allow to select a custom list of output files to be shown by "Calculate-

>View process info" (in case that we want to not use the list of 'OutFiles' declared in the bat file).

GiD v17

Copyright © 2024, GiD, CIMNE 162

proc GiD_Event_SelectGIDBatFile { dir basename } {

...body...

set value ...

return $value

}

proc GiD_Event_BeforeCalculate { remote } {

...body...

set value ...

return $value

}

proc GiD_Event_BeforeRunCalculation { batfilename basename dir

problemtypedir gidexe args } {

...body...

set value ...

return $value

}

Run

GiD_Event_SelectGIDBatFile: must be used to switch the default batch file for special cases.

This procedure must return as a value the alternative pathname of the batch file. For example it is used as a

trick to select a different analysis from a list of batch calculation files.

in fact can return a list with the batch_name and some extra parameters that will be added to the arguments of

the call to run the calculation

GiD_Event_BeforeCalculate: will be called a little earlier than GiD_Event_BeforeRunCalculation, e.g. to allow

renumber the mesh before write the calculation file and calculate

remote is 0 in case of local calculation, 1 in case or remote (sending to procserverd)

GiD_Event_BeforeRunCalculation: will be called before running the analysis. It receives several arguments:

 batfilename: the name of the batch file to be run

 basename: the short name model

 dir: the full path to the model directory

 problemtypedir: the full path to the Problem Types directory

 gidexe: the full path to gid

 args: an optional list with other arguments

If it returns -cancel- then the calculation is not started.

GiD_Event_AfterRunCalculation: will be called just after the analysis finishes.

If it returns -cancel-as a value then the window that inform about the finished process will not be opened.

It receives as arguments:

basename: the short name model;

GiD v17

Copyright © 2024, GiD, CIMNE 163

dir: the full path to the model directory;

problemtypedir: the full path to the Problem Types directory;

where: must be local or remote (remote if it was run in a server machine, using ProcServer);

error: returns 1 if an calculation error was detected;

errorfilename: an error filename with some error explanation, or nothing if everything was ok.

Events postprocess

 Start/End

GiD_Event_BeforeInitGIDPostProcess

GiD_Event_InitGIDPostProcess

GiD_Event_AfterSetPostModelName

GiD_Event_EndGIDPostProcess

 GraphsSet

GiD_Event_AfterCreateGraphSet

GiD_Event_BeforeDeleteGraphSet

GiD_Event_AfterDeleteGraphSet

GiD_Event_AfterChangeGraphSet

GiD_Event_AfterRenameGraphSet

GiD_Event_AfterSetGraphSetToUse

 Graphs

GiD_Event_AfterCreateGraph

GiD_Event_BeforeDeleteGraph

GiD_Event_AfterDeleteGraph

GiD_Event_AfterChangeGraph

GiD_Event_AfterRenameGraph

 Sets

GiD_Event_AfterCreateSurfaceSet

GiD_Event_AfterCreateVolumeSet

GiD_Event_AfterRenameSurfaceSet

GiD_Event_AfterRenameVolumeSet

GiD_Event_BeforeDeleteSurfaceSet

GiD_Event_BeforeDeleteVolumeSet

GiD_Event_AfterChangeLayersOrSets

 Cuts

GiD_Event_AfterCreateCutSet

GiD_Event_AfterRenameCutSet

GiD_Event_BeforeDeleteCutSet

 Results

proc GiD_Event_AfterRunCalculation { basename dir problemtypedir where

error errorfilename } {

...body...

set value ...

return $value

}

GiD v17

Copyright © 2024, GiD, CIMNE 164

proc GiD_Event_BeforeInitGIDPostProcess {} {

}

proc GiD_Event_InitGIDPostProcess {} {

...body...

set value ...

return $value

}

proc GiD_Event_AfterSetPostModelName { name } {

}

proc GiD_Event_EndGIDPostProcess {} {

}

GiD_Event_AfterLoadResults

GiD_Event_BeforeResultReadErrors

GiD_Event_AfterSetAnalysis

GiD_Event_AfterSetTimeStep

GiD_Event_AfterSetResult

GiD_Event_AfterSetResultComponent

Start/End

GiD_Event_BeforeInitGIDPostProcess: will be called just before changing from pre to postprocess, and

before read any postprocess file (this event can be used for example to check the results file existence and/or

rename files). It has no arguments.

If it returns -cancel- as a value then the swapping to postprocess mode will be cancelled.

GiD_Event_InitGIDPostProcess: will be called when postprocessing starts. It has no arguments.

GiD_Event_AfterSetPostModelName

GiD_Event_EndGIDPostProcess: will be called when you leave Postprocess and open Preprocess. It has no

arguments.

GraphsSet

GiD_Event_AfterCreateGraphSet: will be called when a new graphset is created

GiD v17

Copyright © 2024, GiD, CIMNE 165

proc GiD_Event_AfterCreateGraphSet { name } {

}

proc GiD_Event_BeforeDeleteGraphSet { name } {

...body...

set value ...

return $value

}

proc GiD_Event_AfterDeleteGraphSet { name } {

}

proc GiD_Event_AfterChangeGraphSet { name property } {

}

proc GiD_Event_AfterRenameGraphSet { oldname newname } {

}

proc GiD_Event_AfterSetGraphSetToUse { name } {

}

GiD_Event_BeforeDeleteGraphSet: will be called just before delete the graphset 'name'

If it returns -cancel- the deletion is cancelled.

GiD_Event_AfterDeleteGraphSet:

GiD_Event_AfterChangeGraphSet: property could be: legend_location, title_visible

GiD_Event_AfterRenameGraphSet:

GiD_Event_AfterSetGraphSetToUse: will be called when setting 'name' as current graphset to use

Graphs

GiD_Event_AfterCreateGraph: will be called when a new graph is created

GiD v17

Copyright © 2024, GiD, CIMNE 166

proc GiD_Event_AfterCreateGraph { name } {

}

proc GiD_Event_AfterRenameGraph { oldname newname } {

}

proc GiD_Event_BeforeDeleteGraph { name } {

...body...

set value ...

return $value

}

proc GiD_Event_AfterDeleteGraph { name } {

}

proc GiD_Event_AfterChangeGraph { name property } {

}

proc GiD_Event_AfterCreateSurfaceSet { name } {

}

proc GiD_Event_AfterCreateVolumeSet { name } {

}

GiD_Event_BeforeDeleteGraph: will be called just before delete the graph 'name'

If it returns -cancel- the deletion is cancelled.

GiD_Event_AfterDeleteGraph:

GiD_Event_AfterChangeGraph: property could be: color, contour_fill, line_pattern, line_width, pattern_factor,

point_size, style, values, visible

GiD_Event_AfterRenameGraph:

Sets

GiD_Event_AfterCreateSurfaceSet, GiD_Event_AfterCreateVolumeSet: will be called just after a

postprocess set of volumes or surfaces is created, providing its name

GiD v17

Copyright © 2024, GiD, CIMNE 167

proc GiD_Event_AfterRenameSurfaceSet { oldname newname } {

}

proc GiD_Event_AfterRenameVolumeSet { oldname newname } {

}

proc GiD_Event_BeforeDeleteSurfaceSet { name } {

#value -cancel- to avoid deletion

return $value

}

proc GiD_Event_BeforeDeleteVolumeSet { name } {

#value -cancel- to avoid deletion

return $value

}

proc GiD_Event_AfterChangeLayersOrSets { num_sets num_off num_back

num_transparent } {

}

proc GiD_Event_AfterCreateCutSet { name } {

}

proc GiD_Event_AfterRenameCutSet { oldname newname } {

}

GiD_Event_AfterRenameSurfaceSet, GiD_Event_AfterRenameVolumeSet: will be called just after a

postprocess set of volumes or surfaces has been renamed providing its old and current name

GiD_Event_BeforeDeleteSurfaceSet, GiD_Event_BeforeDeleteVolumeSet: will be called just before a

postprocess set of volumes or surfaces will be deleted created, providing its name.

If the procedure return -cancel- then the set won't be deleted

GiD_Event_AfterChangeLayersOrSets

Cuts

GiD_Event_AfterCreateCutSet: will be called just after a postprocess cut is created, providing its name

GiD_Event_AfterRenameCutSet: will be called just after a postprocess cut has been renamed providing its old

and current name

GiD v17

Copyright © 2024, GiD, CIMNE 168

proc GiD_Event_AfterLoadResults { file } {

}

proc GiD_Event_BeforeDeleteCutSet { name } {

#value -cancel- to avoid deletion

return $value

}

proc GiD_Event_BeforeResultReadErrors { filename msg format } {

...body...

set value ...

return $value

}

proc GiD_Event_AfterSetAnalysis { analysis_name } {

}

proc GiD_Event_AfterSetTimeStep { analysis_name step_index } {

}

GiD_Event_BeforeDeleteCutSet: will be called just before a postprocess cut will be deleted created, providing

its name.

If the procedure return -cancel- then the cut won't be deleted

Results

GiD_Event_AfterLoadResults: will be called when a results file is opened in GiD Postprocess. It receives one

argument, the name of the file being opened without its extension.

Note: LoadResultsGIDPostProcess is a deprecated alias of GiD_Event_AfterLoadResults

GiD_Event_BeforeResultReadErrors: filename is the results file that was read, msg is the error message,

format provide information about the kind of file: can be "GID_RESULTS_FORMAT", "3DSTUDIO_FORMAT",

"TECPLOT_FORMAT", "FEMAP_FORMAT", "XYZ_FORMAT"

Retuning -cancel- the standard 'Read results error window' won't be opened

GiD_Event_AfterSetAnalysis: will be called just after set the current analysis

GiD_Event_AfterSetTimeStep: will be called just after set the current time step.

Step_index is an integer index, starting from 0. (a value of -1 mean any time step)

GiD v17

Copyright © 2024, GiD, CIMNE 169

proc GiD_Event_AfterSetResult { analysis_name step_index result_name } {

}

proc GiD_Event_AfterSetResultComponent { analysis_name step_index

result_name component_name } {

}

Note: it is possible to get the value of the step with something like this:

lindex [GiD_Info postprocess get all_steps $analysis_name] $step_index

GiD_Event_AfterSetResult: will be called just after set the current result.

GiD_Event_AfterSetResultComponent: will be called just after set the current result component.

Events general

 GUI

GiD_Event_AfterCreateTopMenus

GiD_Event_AfterChangeBackground

GiD_Event_ChangedLanguage

GiD_Event_ChangeMainWindowTitle

GiD_Event_BeforeUpdateWindow

GiD_Event_BeforeSetCursor

GiD_Event_BeforeSetWarnLine

GiD_Event_MessageBoxModeless

GiD_Event_MessageBoxOk

GiD_Event_MessageBoxEntry

GiD_Event_MessageBoxCombobox

GiD_Event_MessageBoxGetGeneralMeshSize

GiD_Event_GetRecommendedMeshSize

GiD_Event_MessageBoxOptionsButtons

GiD_Event_MessageBoxOptionsButtonsModeless

GiD_Event_MessageBoxGetNormal

GiD_Event_MessageBoxGetFilename

 View

GiD v17

Copyright © 2024, GiD, CIMNE 170

GiD_Event_AfterChangeViewMode

GiD_Event_TclCalcModelBoundaries

GiD_Event_AfterDrawModel

GiD_Event_AfterRedraw

GiD_Event_AfterChangeRenderMode

 Preferences

GiD_Event_AfterReadPreferences

GiD_Event_AfterSavePreferences

 Licence

GiD_Event_AfterChangeLicenceStatus

 Login

GiD_Event_AfterLogin

GiD_Event_AfterLogout

GiD_Event_AfterStartSession

GiD_Event_AfterStopSession

 DataManager

GiD_Event_AfterDataManagerConnect

GiD_Event_AfterDataManagerDisconnect

GiD_Event_AfterDataManagerSetCloudFolder

 Other

GiD_Event_AfterProcess

GiD_Event_AfterEndCommand

GiD_Event_BeforeSetVariable

GiD_Event_AfterSetVariable

GiD_Event_BeforeExit

GiD_Event_BeforeSaveBackup

GiD_Event_AfterSaveBackup

GUI

GiD_Event_AfterCreateTopMenus: will be called just after creating the top menus.

GiD v17

Copyright © 2024, GiD, CIMNE 171

proc GiD_Event_AfterChangeBackground { } {

}

proc GiD_Event_ChangedLanguage { language } {

}

proc GiD_Event_ChangeMainWindowTitle { project_name problemtype_name } {

}

proc GiD_Event_BeforeUpdateWindow { window } {

}

proc GiD_Event_BeforeSetCursor { name togle } {

}

GiD_Event_AfterChangeBackground: will be called just after change some background property, like color,

direction or image.

GiD_Event_ChangedLanguage: will be called when you change the current language. The argument is the

new language (en, es, ...). It is used, for example, to update problem type customized menus, etc.

GiD_Event_ChangeMainWindowTitle: will be called when GiD changes the title of the main graphical window.

Two arguments: project_name and problemtype_name.

GiD_Event_BeforeUpdateWindow

GiD_Event_BeforeSetCursor

name is the cursor name that will be set, and togle is the widget name

Some events that allow show the appropriated widgets

GiD_Event_BeforeSetWarnLine

GiD_Event_MessageBoxModeless

GiD_Event_MessageBoxOk

GiD_Event_MessageBoxEntry

proc GiD_Event_AfterCreateTopMenus { } {

}

GiD v17

Copyright © 2024, GiD, CIMNE 172

proc GiD_Event_BeforeSetWarnLine { message } {

}

#show the message and continue

proc GiD_Event_MessageBoxModeless { title message } {

}

#show the message and wait the user action

proc GiD_Event_MessageBoxOk { title question message_small image } {

}

proc GiD_Event_MessageBoxEntry { title question entry_win_type

default_answer button_assign image } {

}

proc GiD_Event_MessageBoxCombobox { title question options state image

} {

}

proc GiD_Event_MessageBoxGetGeneralMeshSize { last_generation_size

recommended_size get_meshing_parameters_from_model } {

}

proc GiD_Event_GetRecommendedMeshSize { recommended_mesh_size } {

...

return $new_recommended_mesh_size

}

proc GiD_Event_MessageBoxOptionsButtons { title question message_small

options labels image } {

}

proc GiD_Event_MessageBoxOptionsButtonsModeless { title question

message_small options labels image } {

}

GiD_Event_MessageBoxCombobox

GiD_Event_MessageBoxGetGeneralMeshSize

Note: The GiD_Event_GetRecommendedMeshSize could be used to modify the default mesh size

recommended by GiD (and provided to GiD_Event_MessageBoxGetGeneralMeshSize). It must return a positive

real value.

GiD_Event_GetRecommendedMeshSize

GiD_Event_MessageBoxOptionsButtons

GiD_Event_MessageBoxOptionsButtonsModeless

Note: This command 'Modeless' open a non-modal window (non-locking) and the selected option will be sent to

GiD_Process when the user click its button.

GiD_Event_MessageBoxGetNormal

GiD_Event_MessageBoxGetFilename

GiD v17

Copyright © 2024, GiD, CIMNE 173

proc GiD_Event_MessageBoxGetNormal { title } {

}

proc GiD_Event_MessageBoxGetFilename { category mode title

initial_filename file_types default_extension multiple more_options } {

}

proc GiD_Event_AfterChangeViewMode { useof } {

body...

}

proc GiD_Event_GetBoundingBox { useof } {

...body...

return [list $xmin $ymin $zmin $xmax $ymax $zmax]

}

proc GiD_Event_AfterDrawModel {} {

}

proc GiD_Event_AfterRedraw {} {

}

View

GiD_Event_AfterChangeViewMode: useof: can be "GEOMETRYUSE", "MESHUSE", "POSTUSE" or

"GRAPHUSE".

GiD_Event_GetBoundingBox: will be called when recalculating the bounding box, for example when user

select "zoom frame"

useof: can be "GEOMETRYUSE", "MESHUSE", "POSTUSE" or "GRAPHUSE".

This procedure must return xmin ymin zmin xmax ymax zmaz of the bounding box of the entities directly

managed by the problemtype (these entities must be directly drawn with the drawopengl command).

If "" is returned instead "xmin ymin zmin xmax ymax zmaz" then any additional bounding box is considered.

Note: Must not use GiD commands asking for the model size, like GiD_Info Layers -bbox , because these

commands will invoke again GiD_Event_GetBoundingBox entering in a cyclic loop. (these kind of commands

are unneeded here, because GiD_Event_GetBoundingBox must inform only about its own managed objects)

Note: TclCalcModelBoundaries is a deprecated alias of GiD_Event_GetBoundingBox.

GiD_Event_AfterDrawModel: to allow some OpenGL custom draw, before swap buffers.

GiD_Event_AfterRedraw:

GiD v17

Copyright © 2024, GiD, CIMNE 174

proc GiD_Event_AfterChangeRenderMode { render_mode } {

}

proc GiD_Event_AfterReadPreferences{ filename } {

}

proc GiD_Event_AfterSavePreferences{ filename } {

}

proc GiD_Event_AfterChangeLicenceStatus { status } {

}

proc GiD_Event_AfterLogin { username } {

}

proc GiD_Event_AfterLogout { } {

}

GiD_Event_AfterChangeRenderMode: render_mode could be "flat", "normal", "smooth",...

Preferences

GiD_Event_AfterReadPreferences: will be called just after GiD read from the user preferences file <filename>

variables (first Tcl and then C++)

GiD_Event_AfterSavePreferences: will be called just after GiD saves in the user preferences file <filename>

the variables (first C++ and then Tcl)

Licence

GiD_Event_AfterChangeLicenceStatus: will be called when the licence status of GiD changes. Possible

status could be "academic", "professional" or "temporallyprofessional"

Login

GiD_Event_AfterLogin: will be called when the login status of GiD changes. It provide the logged username

GiD_Event_AfterLogout: will be called when the username logout.

GiD_Event_AfterStartSession: will be called when the logged user start the session of a program, usually GiD

(use its named-user password) . It provide the program and its main version, and a JWT session token

GiD v17

Copyright © 2024, GiD, CIMNE 175

proc GiD_Event_AfterStopSession { program main_version } {

}

proc GiD_Event_AfterDataManagerSetCloudFolder { path } {

path = Unit in windows (Z: for instance)

path = $HOME/GiD Cloud in linux or macOS

path = "" if is unmounted or already was not detected

}

GiD_Event_AfterStopSession: will be called when the logged user finish the session of a program. It provide

the program and its main version

DataManager

GiD_Event_AfterDataManagerConnect: will be called when the DataManager’s share has been mounted

locally

proc GiD_Event_AfterDataManagerConnect { path } {

path = Unit in windows (Z: for instance)

path = $HOME/GiD Cloud in linux or macOS

}

GiD_Event_AfterDataManagerDisconnect: will be called when the DataManager’s share has been

dismounted. Note that if several GiD’s are launched, only the last GiD to quit will dismount the DataManager’s

share and will trigger this event.

proc GiD_Event_AfterDataManagerDisconnect { } {

only the last GiD to quit will trigger this event.

}

GiD_Event_AfterDataManagerSetCloudFolder: will be called when DataManager’s share is mounted,

unmounted, or also if before start GiD it was already mounted, once it was detected.

Other

GiD_Event_AfterProcess: will be called just after GiD has finished the process of 'words' and the word is

consumed (the parameter is_view==1 if the command is a view function, like a rotation of the view, pan,...).

proc GiD_Event_AfterStartSession { program main_version session_token }

{

}

GiD v17

Copyright © 2024, GiD, CIMNE 176

proc GiD_Event_AfterEndCommand { is_view } {

}

proc GiD_Event_AfterProcess { words is_view } {

}

proc GiD_Event_BeforeSetVariable { variable value } {

#to avoid change the variable return -cancel-

}

proc GiD_Event_AfterSetVariable { variable value } {

}

proc GiD_Event_BeforeExit { } {

}

proc GiD_Event_AfterSaveBackup { dirname } {

}

This event could be interesting for some tricks, like save processed commands in a batch file, or send the

commands to be processed by other GiD slave, etc.

GiD_Event_AfterEndCommand: will be called just after GiD pop a function from its stack. (the parameter

is_view==1 if the command is some kind of view command, like a rotation, displacement, etc.)

This event could be used to try to mark the collection of keywords that below to an action, it is raised when the

action is finished.

GiD_Event_BeforeSetVariable / GiD_Event_AfterSetVariable: will be called just before or after set the value

of a GiD variable

GiD_Event_BeforeExit: will be called just before exit GiD

GiD_Event_BeforeSaveBackup : will be called just before save a backup.

<dirname> is the name of the folder were will be saved (it can already do not exists).

To avoid save it can return -cancel-

GiD_Event_AfterSaveBackup : will be called just after save a backup.

<dirname> is the name of the folder were it was saved

proc GiD_Event_BeforeSaveBackup { dirname } {

}

GiD v17

Copyright © 2024, GiD, CIMNE 177

GiD_Process Mescape Geometry Create Line 0,0,0 10,0,0 escape

GiD_Process function

GiD_Process command_1 command_2 ...

Tcl command used to execute GiD commands.

This is a simple function, but a very powerful one. It is used to enter commands directly inside the central event

manager. The commands have the same form as those typed in the command line within GiD.

You have to enter exactly the same sequence as you would do interactively, including the escape sequences

(using the word escape) and selecting the menus and operations used.

You can obtain the exact commands that GiD needs by checking the Right buttons menu (Utilities -> Tools ->

Toolbars). It is also possible to save a batch file (Utilities -> Preferences) where the commands used during the

GiD session can be checked.

Here is a simple example to create one line:

Note: Mescape is a multiple 'escape' command, to go to the top of the commands tree.

GiD_Info function

GiD_Info <option>

Tcl command used to obtain information about the current GiD project.

This function provides any information about GiD, the current data or the state of any task inside the application.

Depending on the arguments introduced after the GiD_Info sentence, GiD will output different information:

GiD_Info automatictolerance

GiD_Info AutomaticTolerance

This command returns the value of the Import Tolerance used in the project. This value is defined in the

Preferences window under Import.

GiD_Info conditions

GiD_Info conditions over_point | over_line | over_surface | over_volume | over_layer | over_group

(problemtype classic only)

This command returns a list of the conditions in the project. One of the arguments over_point, over_line,

over_surface, over_volume must be given to indicate the type of condition required, respectively, conditions

over points, lines, surfaces or volumes.

Note: it is also possible ask for the list of conditions declared in mesh as over_node | over_element |

over_face

Instead of over_point, over_line, over_surface, over_volume, over_layer, over_group the following options are

also available:

 GiD_Info conditions ?-interval <intv>? ?-array? ?-localaxes | -localaxesmat | -localaxescenter | -

localaxesmatcenter? <condition_name> ?geometry|mesh|groups ?<entity_id>|-count?

if a condition name is given, the command returns the properties of that condition.

It is also possible to add the options geometry|mesh|groups, and all geometry or mesh entities that have this

condition assigned will be returned in a list if its integer identifiers. The word 'groups' must be used only if the

condition was declared as 'over groups' and then the list contain its names.

GiD v17

Copyright © 2024, GiD, CIMNE 178

If -interval "intv" is set, then the conditions on this interval ("intv"=1,...n) are returned instead of those on the

current interval.

If -localaxes is set, then the three numbers that are the three Euler angles that define a local axes system are

also returned (only for conditions with local axes, see DATA>Local Axes from Reference Manual).

Selecting -localaxesmat, the nine numbers that define the transformation matrix of a vector from the local axes

system to the global one are returned.

If -localaxescenter is set, then the three Euler angles and the local axis center are also returned.

Selecting -localaxesmatcenter returns the nine matrix numbers and the center.

-array must be used only in combination with -localaxes_xx to get data more efficiently, as a list of two arrays,

the first are the integer ids of the entities, and the second array the double values representing the localaxes

data.

In case of 'face-element' entities the first item is a list of two items, the integer ids of the elements and the

integer ids of the faces (local ids from 1 to 6)

Note: if -array is not used then -localaxes_xx return not only the local axis data of the #LA# question, but also

the string values of the other questions non #LA# questions.

Adding the number id of an entity (<entity_id>) after the options mesh or geometry, the command returns the

value of the condition assigned to that entity. It is possible to specify a range of ids with the syntax <first_id:

last_id>

if -count is specified then the amount of entities with the condition is returned instead of the list of entities and

its values.

Other options available if the condition name is given are

otherfields: to get some special fields of that condition

book: to get the book of the condition.

condmeshtype: to know how the condition was defined to be applied on mesh entities: over nodes, over body

elements, over face elements, over face elements multiple

canrepeat: to know how the condition was defined to be applied only once or more to the same entity: values

are 0 or 1

groupallow: to know how the condition 'over groups' was defined to allow the group to have entities of one or

more kinds of {points lines surfaces volumes nodes elements faces}

 books: If this option is given, a list of the condition books of the project is returned.

Examples:

in: GiD_Info conditions over_point

out: "Point-Weight Point-Load"

in: GiD_Info conditions Point-Weight

out: "ovpnt 1 Weight 0"

in: GiD_Info conditions Point-Weight geometry

out: {E 8 - 2334} {E 20 - 2334} {E 31 - 343}

in: GiD_Info conditions Point-Weight geometry -count

out: "3"

in: GiD_Info Conditions -localaxes Concrete_rec_section mesh 2

out: {E 2 - {4.7123889803846897 1.5707963267948966 0.0}}

GiD_Info coordinates

GiD_Info Coordinates ?-no_model? <point_id>|<node_id> [geometry|mesh]

This command returns the coordinates (x,y,z) of a given point or node.

If -no_model flag is specified then entities are stored in a special container, it doesn't belong to the model

GiD_Info check

GiD_Info check

This command returns some specialized entities check.

The result for each argument is:

GiD v17

Copyright © 2024, GiD, CIMNE 179

 line | surface | volume | mesh: Type of entity.

 <entity_id>: The number of an entity.

 isclosed: For lines: 1 if start point is equal to end point, 0 otherwise. For surfaces: A surface is closed if its

coordinate curves (of the full underlying surface) with parameter 0 and 1 are equal. It returns a bit encoded

combination of closed directions: 0 if it is not closed, 1 if it is closed in u, 2 if it is closed in v, 3 if it is closed in

both u and v directions.

 isdegeneratedboundary: A surface is degenerated if some boundary in parameter space (south, east,

north or west) becomes a point in 3d space. It returns a bit encoded combination of degenerated

boundaries, for example: 0 if it is not degenerated, 9=2^0+2^3 if south and west boundaries are degenerated.

 selfintersection ?-tolerance <tolerance>?: Intersections check between surface boundary lines. It returns

a list of detected intersections. Each item contains the two line numbers and their parameter values.

 orientation: For volumes, it returns a two-item list. The first item is the number of bad oriented volume

surfaces, and the second item is a list of these surfaces' numbers.

 boundaryclose: For volumes, a boundary is topologically closed if each line is shared by two volume

surfaces. It returns 0 if it is not closed and must be corrected, or 1 if it is closed.

 contact_elements_connectivities: For mesh of contact surfaces or contact volumes. Verify that the

connectivities of the contact elements are not crossed. It returns as a list 0 if ok, 1 if bad and then an error

message.

For lines it has the following syntax:

GiD_Info check line <entity_id> isclosed

For surfaces:

GiD_Info check surface <entity_id> isclosed | isdegeneratedboundary | selfintersection

For volumes:

GiD_Info check volume <entity_id> orientation | boundaryclose

For mesh:

GiD_Info check mesh contact_elements_connectivities

Example:

in: GiD_Info check volume 5 orientation

out: 2 {4 38}

GiD_Info events

GiD_Info events ?-deprecated? ?-args <event_name>?

GiD_Info events

This command returns a sorted list with the names of the GiD Tcl event procedures, that could be implemented

by a problemtype.

These events are automatically undefined when the problemtype is unloaded

GiD_Info events -deprecated

return a list of Tcl events that are mark as deprecated, there is a new similar event that is recommendable to be

used instead.

deprecated events are also raised for back compatibility with problemtypes that are already implementing them.

GiD_Info events -args <event_name>

Return the list of arguments of the event

Event procedures

GiD_Info gendata

GiD v17

Copyright © 2024, GiD, CIMNE 180

GiD_Info gendata

This command returns the information entered in the Problem Data window (see Problem and intervals data file

(.prb)).

The following options are available:

 [otherfields]: It is possible to add this option to get the additional fields from the Problem Data window.

 [books]: If this option is given, a list of the Problem Data books in the project is returned.

Example:

in: GiD_Info gendata

out: "2 Unit_System#CB#(SI,CGS,User) SI Title M_title"

GiD_Info geometry

GiD_Info Geometry

This command gives the user information about the geometry in the project. For each entity, there are two

possibilities:

 [NumPoints]: Returns the total number of points in the model.

 [NumLines]: Returns the total number of lines.

 [NumSurfaces]: Returns the total number of surfaces.

 [NumVolumes]: Returns the total number of volumes.

 [NumDimensions]: Returns the total number of dimensions.

 [MaxNumPoints]: Returns the maximum point number used (can be higher than NumPoints).

 [MaxNumLines]: Returns the maximum line number used.

 [MaxNumSurfaces]: Returns the maximum surface number used.

 [MaxNumVolumes]: Returns the maximum volume number used.

 [MaxNumDimensions]: Returns the maximum dimension number used.

GiD_Info gidbits

GiD_Info GiDbits

If GiD is a x32 binary executable, then this command returns 32.

If GiD is a x64 binary executable, then this command returns 64.

GiD_Info gidversion

GiD_Info GiDVersion

This command returns the GiD version number. For example 10.0.8

GiD_Info graphcenter

GiD_Info graphcenter

This command returns the coordinates (x,y,z) of the center of rotation.

GiD_Info intvdata

GiD_Info intvdata

(problemtype classic only)
This command returns a list of the interval data in the project (see Problem and intervals data file (.prb)).

The following options are available:

 -interval <number>: To get data from an interval different from the number 0 (default).

 [otherfields]: It is possible to add this option to get the additional fields from the Interval Data window.

 [books]: If this option is given, a list of the Interval Data books in the project is returned.

 [num]: If this option is given, a list of two natural numbers is returned. The first element of the list is the

current interval and the second element is the total number of intervals.

GiD_Info ispointinside

GiD v17

Copyright © 2024, GiD, CIMNE 181

GiD_Info IsPointInside

GiD_Info IsPointInside ?-no_model? ?-tolerance <tol>? Line|Surface|Volume <num> {<x> <y> <z>}

This commands returns 1 if the point {x y z} is inside the specified volume/surface/curve, or 0 if lies outside.

If -no_model flag is specified then entities are stored in a special container, it doesn't belong to the model

GiD_Info layers

GiD_Info layers

This command returns a list of the layers in the project.These options are also available:

 <layer_name>: If a layer name is given, the command returns the properties of that layer.

 -on: Returns a list of the visible layers.

 -off: Returns a list of the hidden layers.

 -hasbacklayers: Returns 1 if the project has entities inside back layers.

 Note: GiD_Info back_layers returns a list with the back layers

Example:

in: GiD_Info back_layers

out: Layer2_back

 -bbox ?-use geometry|mesh? <layer_name_1> <layer_name_2> ...

Returns an item with a list of six real numbers representiong two coordinates (x1,y1,z1,x2,y2,z2) which define

the bounding box of the entities that belong to the list of layers.

If the option -use geometry|mesh is used, the command returns the bounding box of the geometry or the

bounding box of the mesh.

If the list of layers is empty, the maximum bounding box is returned.

 ?-count? -entities <type> ?-elementtype <elementtype>? ?-higherentity <num>?: One of the

following arguments must be given for <type>: nodes, elements, points, lines, surfaces or volumes. A

layer name must also be given. The command will return the nodes, elements, points, lines surfaces or

volumes of that layer. If -count is set then the amound of entities is returned instead of the list of its ids.

For elements it is possible to specify -elementtype <elementtype>to get only this kind of elements.

-higherentity <num>Allow to get only entities with this amount of higherentities.

 -canbedeleted <layer_name> returns a list with two items: a boolean 0|1 to know if layer or its child

layers have some entity or parts in back layer or conditions over the layer. the second item is a message

explaining the cause to not delete it directly.

Examples:

in: GiD_Info layers

out: "layer1 layer2 layer_aux"

in: GiD_Info layers -on

out: "layer1 layer2"

in: GiD_Info layers -entities lines layer2

out: "6 7 8 9"

in: GiD_Info layers -count -entities lines layer2

out: 4

GiD_Info library

GiD_Info library

To access to information of some linked libraries (e.g. gid mesh libraries)

GiD_Info library names

This command returns a list of libraries

GiD v17

Copyright © 2024, GiD, CIMNE 182

GiD_Info library version <library_name>

This command returns a string with the version of the code of the library.

<library_name> must be one of the ones returned by GiD_Info library names

GiD_Info library format_version <library_name>

This command returns a string with the version of the data format used to transmit the input/output of the library

<library_name> must be one of the ones returned by GiD_Info library names

The data format could be transmitted in memory or serialized in a .gidml file with HDF5 syntax.

GiD_Info listmassproperties

GiD_Info ListMassProperties ?-no_model? Points|Lines|Surfaces|Volumes|Nodes|Elements <entity_id>

If -no_model flag is specified then entities are stored in a special container, it doesn't belong to the model

This command returns properties of the selected entities.

It returns the length if entities are lines, area if surfaces, volume if volumes, or the center of gravity if entities

are nodes or elements. It has the following arguments:

 Points/Lines/Surfaces/Volumes/Nodes/Elements: Type of entity.

 entity_id: The number of an entity. It is also possible to enter a list of entities (e.g.: 2 3 6 45) or a range of

entities (e.g.: entities from 3 to 45, would be 3:45).

Example:

in: GiD_Info ListMassProperties Lines 13 15

out:

LINES

n. Length

13 9.876855

15 9.913899

Selected 2 figures

Total Length=19.790754

GiD_Info list_entities

GiD_Info list_entities

 GiD_Info list_entities ?-no_model? Status|PreStatus|PostStatus

If -no_model flag is specified then entities are stored in a special container, it doesn't belong to the model

This command returns a list with general information about the current GiD project.

PreStatus ask for the information of preprocess

PostStatus ask for the information of postprocess

Status return the infomation of pre or postprocess depending of where are now, in pre or post mode.

Example:

in: GiD_Info list_entities PreStatus

out:

Project name: UNNAMED

Problem type: UNKNOWN

Changes to save(0/1): 1

Necessary to mesh again (0/1): 1

Using LAYER: NONE

Interval 1 of 1 intervals

Degree of elements is: Normal

Using now mode(geometry/mesh): geometry

number of points: 6

number of points with 2 higher entities: 6

number of points with 0 conditions: 6

GiD v17

Copyright © 2024, GiD, CIMNE 183

number of lines: 6

number of lines with 1 higher entities: 6

number of lines with 0 conditions: 6

number of surfaces: 1

number of surfaces with 0 higher entities: 1

number of surfaces with 0 conditions: 1

number of volumes: 0

number of nodes: 8

number of nodes with 0 conditions: 8

number of Triangle elements: 6

number of elements with 0 conditions: 6

Total number of elements: 6

Last size used for meshing: 10

Internal information:

Total MeshingData:0 Active: 0 0%

 GiD_Info list_entities

This command returns information about entities.

It has the following arguments:

 Points / Lines / Surfaces / Volumes / Dimensions / Nodes / Elements / Results: Type of entity or

Results. Note: If the user is postprocessing in GiD, the information returned by Nodes/Elements

concerns the nodes and elements in postprocess, including its results information. To access preprocess

information about the preprocess mesh, the following entity keywords should be used: PreNodes

/PreElements.

 entity_id: The number of an entity. It is also possible to enter a list of entities (e.g.: 2 3 6 45), a range of

entities (e.g.: entities from 3 to 45, would be 3:45) or a layer (e.g.: layer:layer_name).

Using "list_entities Results" you must also specify <analysis_name> <step> <result_name> <indexes>With the

option -more, more information is returned about the entity. The -more option used with lines returns the length

of the line, its radius (arcs), and the list of surfaces which are higher entities of that line; used with elements it

returns the type of element, its number of nodes and its volume.

Example 1:

in: GiD_Info list_entities Points 2 1

out:

POINT

Num: 2 HigherEntity: 1 conditions: 0 material: 0

LAYER: car_lines

Coord: -11.767595 -2.403779 0.000000

END POINT

POINT

Num: 1 HigherEntity: 1 conditions: 0 material: 0

LAYER: car_lines

Coord: -13.514935 2.563781 0.000000

END POINT

Example 2:

in: GiD_Info list_entities lines layer:car_lines

out:

STLINE

Num: 1 HigherEntity: 0 conditions: 0 material: 0

LAYER: car_lines

Points: 1 2

END STLINE

GiD v17

Copyright © 2024, GiD, CIMNE 184

STLINE

Num: 13 HigherEntity: 0 conditions: 0 material: 0

LAYER: car_lines

Points: 13 14

END STLINE

Example 3 (using -more):

in: GiD_Info list_entities -more Lines 2

out:

STLINE

Num: 2 HigherEntity: 2 conditions: 0 material: 0

LAYER: Layer0

Points: 2 3

END STLINE

LINE (more)

Length=3.1848 Radius=100000

Higher entities surfaces: 1 3

END LINE

GiD_Info localaxes

GiD_Info localaxes ?<name>? ?-localaxesmat?

GiD_Info localaxes

Returns a list with all the user defined local axes.

GiD_Info localaxes <name>

Returns a list with 2 items: the euler angles "e1 e2 e3" and the center "cx cy cz" that define the local axes called

<name>.

GiD_Info localaxes <name> -localaxesmat

Returns a list with 2 items: the rotation matrix and the center.

The rotation matrix 3x3 is a list of 9 numbers "x1 y1 z1 x2 y2 z2 x3 y3 z3" that define the rotation of a vector

from the local axes system xyz to the global one XYZ.

GiD_Info magnitudes

(problemtype classic only)

GiD_Info magnitudes 0|1 ?<magnitude_name> units?
Return information about units and the conversion factor between units of a magnitude.

GiD_Info magnitudes 0|1

GiD_Info magnitudes 0

return a list with the available default magnitude names of GiD (the ones defined in the scripts\units.gid file)

and

GiD_Info magnitudes 1

return a list with the available magnitude names of the project (the ones defined loading a <problemtype>.uni

file)

e.g.

in: GiD_Info magnitudes 0

out: ACCELERATION ANGLE LENGTH MASS STRENGTH PRESSURE TEMPERATURE

GiD_Info magnitudes 0|1 <magnitude_name> units

return a list of unit names and conversion factors from the reference unit (the first listed)

<magnitude_name> is the name of the magnitude, like LENGTH or other magnitudes that could be defined by

GiD v17

Copyright © 2024, GiD, CIMNE 185

the problemtype

e.g.

in: GiD_Info magnitudes 0 LENGTH units

out: {1.0 m {} m {} m} {100 cm {} cm {} cm} {1.0e+3 mm {} mm {} mm}

with the multiplication factor to convert the length magnitude from the reference unit to another unit.

(e.g to convert a value from cm to m must multiply by 100)

GiD_Info materials

GiD_Info materials

(problemtype classic only)
This command returns a list of the materials in the project.

GiD_Info materials(<bookname>) returns only the materials that belong to the book <bookname>)

These options are also available:

 <material_name>: If a material name is given, its properties are returned.

 It is also possible to add the option otherfields to get the fields of that material, or the option book to get the

book of that material.

 books: If this option is given, a list of the material books in the project is returned.

Examples:

in: GiD_Info materials

out: "Air Steel Aluminium Concrete Water Sand"

in: GiD_Info materials Steel

out: "1 Density 7850"

GiD_Info materials Steel otherfields

GiD_Info materials books

GiD_Info materials(profiles)

GiD_Info mesh

GiD_Info Mesh

This command gives the user information about the selected mesh in the project.

Without arguments it returns 1 if there is mesh, followed by a list with all types of element used in the mesh.

?-pre | -post? -step_index <step_index> | -step_value <step_value>? ?-set_name <set_name>?:

-pre | -post: To specify to use the preproces or postprocess mesh (default -pre).

-step_index <step_index> | -step_value <step_value>:In post can specify time step if the mesh changes along

the time (by default the current time step is assumed)

Must set only -step_index <step_index> or alternatively -step_value <step_value>, but not both.

the <step_index> is an integer starting from 0 (a special value all is valid and mean 'all steps' for some options)

the <step_value> is a double value representing the value of the time step.

-set_name <set_name>: for Elements of post is optional specify -set_name <set_name> to get only the

elements of this set, in case that more than one.

 NumElements <Elemtype> ?<nnode>?: returns the number of elements of the mesh.

Elemtype can be: Line | Triangle | Quadrilateral | Tetrahedra | Hexahedra | Prism | Pyramid | Point |

Sphere | Circle | Any.

GiD v17

Copyright © 2024, GiD, CIMNE 186

nnode is the number of nodes of an element, if this argument is missing the amount does not take into account

the number of nodes.

 NumNodes: Returns the total number of nodes of the mesh.

 MaxNumElements: Returns the maximum element number.

 MaxNumNodes: Returns the maximum node number.

 Elements <Elemtype> ?<first_id>? ?<last_id>? ?-sublist|-array|-array2? ?-avoid_frozen_layers? ?-

layer <layername>? ?-group <groupname>? ?-orphan?

Returns a list with the element numbers, the connectivities , radius if it is a sphere, normal if it is a circle,

and the material number, from 'first_id' to 'last_id, if they are specified.

Note: in -post case it return a list of items, one item by set, of the required element type, and each item is a

sub-list with the data related previously (number connectivities ?radius? ?normal? material)

 Nodes ?<first_id>? ?<last_id>? ?-sublist|-array|-array2? ?-avoid_frozen_layers? ?-layer

<layername>? ?-group <groupname>?: Returns a list with the node number and x y z coordinates, from

'first_id' to 'last_id', if they are specified.

Modifiers:

-sublist : Instead of a flat list it returns each result item as a Tcl list (enclosed in braces)

-array : Instead of a flat list it returns the results as a list of objarrays (more efficient).

For 'Nodes' it returns a list with 1 objarray for the NodeIDs and a list with 3 objarrays: the X coordinates, the Y

coordinates and the Z coordinates.

For 'Elements' it returns a list with the element type, an objarray with the element id's, a list with an objarray for

each node of the connectivity (i.e. for a triangle an objarray for all node1, another for the node2 and another for

the node3), and an objarray for the material id of the elements.

-array2 : Instead of a flat list it returns the results as a list of objarrays (more efficient).

For 'Nodes' it returns a list with 2 objarrays: one for the NodeIDs and another for the xyz coordinates.

For 'Elements' it returns a list with the element type, an objarray with the element id's, an objarray for all the

connectivities (i.e. for a triangle an objarray with node1-node2-node3-node1-node2-node3), and an objarray for

the material id of the elements.

An 'objarray' is a Tcl_Obj object specialized for arrays, implemented as a Tcl package named 'objarray'. (for

more information see the local file <GiD>/scripts/objarray/objarray.pdf)

-avoid_frozen_layers : to ignore nodes or elements of frozen layers

-layer <layername> : to get only nodes of element of this layer

-group <groupname> : to get only nodes of element of this group

-orphan : for elements only, to get elements that do not belong the the mesh of any geometrical entity

 EmbeddedDistances: Returns a list with 2 items, the objarray of ids of the nodes (integers) and the

objarray of distances to the boundary (doubles). This information is only available meshing with embedded

mesh type

Examples:

in: GiD_Info Mesh

out: "1 Tetrahedra Triangle"

in: GiD_Info Mesh MaxNumNodes

out: "1623"

https://gidsimulation.atlassian.net/wiki/spaces/OB/overview

GiD v17

Copyright © 2024, GiD, CIMNE 187

GiD_Info Mesh nodes

-> 1 0.0 1.0 0.0 2 1.0 1.0 0.0 3 0.0 0.0 0.0 4 1.0 0.0 0.0

GiD_Info Mesh nodes -sublist

-> {1 0.0 1.0 0.0} {2 1.0 1.0 0.0} {3 0.0 0.0 0.0} {4 1.0 0.0 0.0}

GiD_Info Mesh nodes -array

-> {1 2 3 4} {{0.0 1.0 0.0 1.0} {1.0 1.0 0.0 0.0} {0.0 0.0 0.0 0.0}}

GiD_Info Mesh nodes -array2

-> {1 2 3 4} {0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0}

GiD_Info Mesh elements triangle

-> 1 3 4 1 0 2 1 4 2 0

GiD_Info Mesh elements triangle -sublist

-> {1 3 4 1 0} {2 1 4 2 0}

Example 2:

Mesh with

node_id x_coord y_coord z_coord

1 0.0 1.0 0.0

2 1.0 1.0 0.0

3 0.0 0.0 0.0

4 1.0 0.0 0.0

element_id node1 node2 node3 material

1 3 4 1 0

2 1 4 2 0

set data [GiD_Info Mesh EmbeddedDistances]

lassign $data nodes distances

set length [objarray length $nodes_list]

for {set i 0} {$i < $length} {incr i } {

set node_id [objarray get $nodes $i]

set distance [objarray get $distances $i]

W "$node_id $distance"

}

GiD v17

Copyright © 2024, GiD, CIMNE 188

GiD_Info meshquality

GiD_Info MeshQuality

This command returns a list of numbers. These numbers are the Y relative values of the graph shown in the

option Meshing -> Mesh quality (see MESH>Mesh Quality from Reference Manual) and two additional real

numbers with the minimum and maximum limits.

This command has the following arguments:

 MinAngle / MaxAngle / ElemSize / ElemMinEdge / ElemMaxEdge / ElemShapeQuality /

ElemMinJacobian / NumNeighbors / SpaceFilling / ElemRadius: quality criterion.

Note: NumNeighbors / SpaceFilling / ElemRadius only works for Sphere and Circle.

 Line / Triangle / Tetrahedra / Quadrilateral / Hexahedra / Prism / Pyramid / Point / Sphere / Circle:

type of element.

 <min_value>: e.g. minimum number of degrees accepted.

 <max_value>: e.g. maximum number of degrees accepted.

if min_value and max_value are set to 0 then limits will be automatically set to the minimum and maximum of

the mesh

 <num_divisions>: number of divisions.

Example:

in: GiD_Info MeshQuality MinAngle Triangle 20 60 4

out: "13 34 23 0 20.0 60.0"

GiD_Info opengl

GiD_Info OpenGl

Returns information about the Opengl/glew version and renderer.

GiD_Info ortholimits

GiD_Info ortholimits

This command returns a list (Left, Right, Bottom, Top, Near, Far, Ext) of the limits of the geometry in the project.

In perspective mode near and far have the perspective distance substracted.

GiD_Info bounding_box

GiD_Info bounding_box ?-geometry|-mesh|-post? ?-layers_off_also? ?point|line|surface|volume

<entity_id>?

This command returns a list {x_min x_max y_min y_max z_min z_max} of the bounding box that contains the

visualized model with the current settings (on layers) of preproces: depends on the current visualization mode:

geometry or mesh.

GiD_Info Mesh elements triangle -array

-> {Triangle {1 2} {{3 1} {4 4} {1 2}} {0 0}}

GiD_Info Mesh elements triangle -array2

-> {Triangle {1 2} {3 4 1 1 4 2} {0 0}}

GiD v17

Copyright © 2024, GiD, CIMNE 189

If the extra flag-geometry, -mesh or -post is set then is used instead of the current visualization.

by default off layers are ignored, to change it can set -layers_off_also

It also could return the bounding box of a geometric entity, specified by its category and <entity_id>.

GiD_Info page and capture settings

GiD_Info postprocess get <option>

The following <option> are available:

pagedimensions: Returns the settings that are applied when an image is sent to the printer or a snapshot is

taken. Returns (in inches) pagewidth, leftmargin, topmargin, imgwidth, imgheight, landscape/portrait.

hardcopyoptions: Returns 1 or 0 for the options "show GiD logo in images", "white background for images",

"white background for videos", "transparent background for images", "transparent background for animations",

"draw background images for images", "draw background images for videos", "show GiD logo in videos".

animationformat: Returns the default animation format.

GiD_Info parametric

GiD_Info parametric

This command returns geometric information (coordinates, derivates, etc.) about parametric lines or surfaces.

For lines it has the following syntax:

GiD_Info parametric ?-no_model? line <entity_id>

coord|deriv_t|deriv_tt|t_fromcoord|t_fromrelativelength|length_to_t <t>|<x> <y> <z> ?<t_seed>?

And for surfaces:

GiD_Info parametric ?-no_model? surface <entity_id>

coord|deriv_u|deriv_v|deriv_uu|deriv_vv|deriv_uv|normal|uv_fromcoord|maincurvatures|uv_projection_z

If -no_model flag is specified then entities are stored in a special container, it doesn't belong to the model

The result for each argument is:

 line|surface: Type of entity.

 <entity_id>: The number of an entity.

 coord: 3D coordinate of the point with parameter t (line) or u,v (surface).

 deriv_t: First curve derivative at parameter t.

 deriv_tt: Second curve derivative at parameter t.

 t_fromcoord: t parameter closest to a 3D point. It is possible to specify alse the <t_seed>

 t_fromrelativelength: parameter corresponding to a relative (from 0 to 1) arc length t

 length_to_t: lenght of the curve until the parameter t (if t=1.0 then it is the total lengh)

 deriv_u,deriv_v: First partial u or v surface derivatives.

 deriv_uu,deriv_vv,deriv_uv: Second surface partial derivatives.

 normal: Unitary surface normal at u,v parameters.

 uv_fromcoord: u,v space parameters closest to a 3D point. It is possible to specify alse the <u_seed>

<v_seed>

 maincurvatures: return a list with 8 numbers: v1x v1y v1z v2x v2y v2z c1 c2

v1x v1y v1z : first main curvature vector direction (normalized)

v2x v2y v2z : second main curvature vector direction (normalized)

c1 c2: main curvature values

 uv_projection_z_fromcoord: to get the location u v of a point x y projected in direction z on a surface

(the z of the point must not be supplied). It is possible to specify alse the <u_seed> <v_seed>

e.g: set uv [GiD_Info parametric surface $id uv_projection_z_fromcoord $x $y]

Note: The vector derivatives are not normalized.

Example:

in: GiD_Info parametric line 26 deriv_t 0.25

out: 8.060864 -1.463980 0.000000

GiD v17

Copyright © 2024, GiD, CIMNE 190

GiD_Info perspectivefactor

GiD_Info perspectivefactor

This command returns which perspective factor is currently being used in the project.

GiD_Info postprocess

GiD_Info postprocess get

This command returns information about the GiD postprocess.

Sets

GiD_Info postprocess get <option>

The following <option> are available:

A volumeset is basically a mesh of volume elements, a surfaceset is a mesh of surface (and line) elements. All

entities of the set are of the same element type.

A cut store the information to define the cut location, cutting could create true new surfacesets including its

interpolated results, or create only visual meshes to be drawn temporarily.

all_volumesets

Returns a list of all sets of volume.

all_surfacesets

Returns a list of all sets of surface (and line).

all_cutsets

Returns a list of all cuts.

cur_volumesets

Returns a list of the visible volume sets.

cur_surfacesets

Returns a list of the visible surface (and line) sets.

cur_cutsets

Returns a list of the visible cut sets.

all_volumes_colors

Returns a list of the volume colors used in the project.

Each item of the list has 4 sub-items: {color_ambient color_diffuse color_specular shininess}

Colors are represented in RGB hexadecimal format #RRGGBB. Example: #000000 would be black, and

#FFFFFF would be white.

Shininess is a real value from 0.0 to 1.0

all_surfaces_colors

Returns a list of the surface colors used in the project. Colors are represented in RGB hexadecimal format.

all_cuts_colors

Returns a list of the cut colors used in the project. Colors are represented in RGB hexadecimal format.

property massive|transparent|transparency|displaystyle|edgewidth|visibility|visualizeresults

<mesh_name>

Returns value of the specified property for the entered mesh name.

Graphs

GiD_Info postprocess get <option>

GiD v17

Copyright © 2024, GiD, CIMNE 191

See also the more modern commands Graphs and GraphSets

The following <option> are available:

all_graphs

Returns a list of all graphs.

all_line_graphs

Returns a list of the line graphs.

all_graphs_views: Returns all available graphs types.

graphs_option: ?-allowed_values? <graphset_property>| <graph_property> <graph_name>

whith -allowed_values flag it is returned a list with the possible values of the property instead of the current

property value.

To get graphset properties

 <graphset_property> could be:

CurrentStyle Grids MainTitle TitleVisible LegendLocation CoordType AngleAxis AngleUnit

ShowOrigAxes ShowRadMarks ColorOrig ColorRad PatRad OutlineOnModel ShowGraphs X_axis

Y_axis ShowModelView LineWidth PointSize

To get graph properties (must specify also the <graph_name>)

 <graph_property> could be:

Style Color ColorAsCFill LineWidth Pattern PatternFactor PointSize Title NumResults ResultsX

ResultsY LabelX LabelY Visible

Graph axis options:

axis_options <axis_option>

Returns the current value for the specified property of the drawing axes option.

 <axis_option> could be:

ShowAxes Type Dimensions AxesWidth AxisXColor AxisYColor AxisZColor XYZLabels Grid

GridXColor GridYColor GridZColor GridXDivisions GridYDivisions GridZDivisions FactorPatron

Patron Label LabelColorAxes LabelType VarFontSize LabelColor Arrow ArrowXColor ArrowYColor

ArrowZColor

display style

GiD_Info postprocess get <option>

The following <option> are available:

all_display_styles

Returns a list of all types of display styles available.

cur_display_style

Returns the current display style.

all_display_renders

Returns a list of all types of rendering available.

cur_display_render

Returns the current rendering method.

GiD v17

Copyright © 2024, GiD, CIMNE 192

num_lights

Returns the current number of active lights. The option can be changed in View->Render->Lights menu.

all_display_culling

Returns a list of all types of culling available.

cur_display_culling

Returns the current culling visualization.

cur_display_transparence

Returns Opaque or Transparent depending on the current transparency. Transparency is chosen by the user in

the Select & Display Style window.

cur_display_body_type

Returns Massive if the option Massive is selected in the "Select & Display Style" window. It returns Hollow if that

option is not activated.

cur_show_conditions

Returns the option selected in the Conditions combo box of the Select & Display Style window. (Possible

values: Geometry Mesh None)

all_show_conditions

Returns all the options available in the Conditions combo box of the Select & Display Style window. (Geometry

Mesh None)

cur_pre_model_properties

Returns all the options selected in the Draw Model and Model Render combo box of the Select & Display Style

window.

all_pre_model_properties

Returns all the options available in the Draw Model and Model Render combo box of the Select & Display Style

window.

results

GiD_Info postprocess get <option>

See also the more modern command Results

The following <option> are available:

all_analysis

Returns a list of all analyses in the project.

all_steps <analysis_name>

Returns the list of time step values for all steps of "analysis_name".

cur_analysis

Returns the name of the current analysis.

cur_step

Returns the current time step value, a double.

cur_step_index

Returns the current time step index, an integer (starting from 0).

is_mesh_variable_along_steps

Returns 1 if the postprocess mesh is changing along the time

GiD v17

Copyright © 2024, GiD, CIMNE 193

all_results_views

Returns all available result views.

cur_results_view

Returns the current result view.

cur_results_list <visualization_type>

The available kinds of result visualization are given by the option all_results_views. The command returns a list

of all the results that can be represented with that visualization in the current step of the current analysis.

result_unit <result_name>

Returns the unit name, the multiplier factor and the addition factor of the result "result_name".

results_list <visualization_type> <analysis_name> <step_value>

The available kinds of result visualization are given by the option all_results_views. The command returns a list

of all the results that can be represented with that visualization in the given step.

cur_result

Returns the current selected result. The kind of result is selected by the user in the View results window.

cur_components_list <result_name>

Returns a list of all the components of the result "result_name".

cur_complex_components_list <result_name>

Returns a list of all the complex components of the result "result_name".

components_list <result_view_type> <result_name> <analysis_name> <step_value>

Returns a list of all the components of the result "result_view_type" "result_name" "analysis_name" "step_value".

cur_component

Returns the current component of the current result.

results_view_list

Returns the current result view, analysis name, step, result name and component name.

main vs reference

GiD_Info postprocess get <option>

The following <option> are available:

It is possible to display two copies of the geometry, the main one (where results are drawn), and a refererence

one.

Main geometry

main_geom_state

Returns whether the main geometry is Deformed or Original.

main_geom_factor <analysis_name> <step_value> <result_name>

Returns the deformation factor of the main geometry of "analysis_name" "step_value" "result_name".

main_geom_all_deform

Returns a list of all the deformation variables (vectors) of the main geometry.

main_geom_cur_deform

Returns the current deformation variable (vectors) of the main geometry.

main_geom_cur_step

Returns the main geometry current step.

main_geom_cur_anal

Returns the main geometry current analysis.

GiD v17

Copyright © 2024, GiD, CIMNE 194

main_geom_cur_factor

Returns the main geometry current deformation factor.

Reference geometry (auxiliary geometry to be compared with main geometry, usually deforming one of them)

show_geom_state

Returns whether the reference geometry is Deformed or Original.

show_geom_color

Returns the reference geometry current color.

show_geom_factor <analysis_name> <step_value> <result_name>

Returns the deformation factor of the reference geometry of "analysis_name" "step_value" "result_name".

show_geom_cur_deform

Returns the current deformation variable (vectors) of the reference geometry.

show_geom_cur_analysis

Returns the reference geometry current analysis.

show_geom_cur_step

Returns the reference geometry current step.

show_geom_deformation_type

Returns whether the reference geometry deformation is relative or absolute

mesh elements

GiD_Info postprocess get <option>

The following <option> are available:

border_criteria

Returns the value of border angle option. Select the angle criteria between faces to consider the shared edge a

boundary edge, i.e. sharp edge, or not. Angles between normals of adjacent faces smaller than the criteria set

will be considered a sharp edge and visualized when the mesh style 'boundaries' is selected.

edge_colour

Returns the edge color for drawing the elements.

Note: this command is deprecated, can get/set its value as a regular variable with GiD_Set PostMeshElements

(EdgeColor)

Points:

info_point_size

Returns the current values for the Point element options in Postprocess->Mesh elements preferences window.

info_point_size_factor "analysis_name" "step_value" "result_name" "component_name"

Returns the current point element factor for "analysis_name" "step_value" "result_name" "component_name".

Spheres:

info_sphere_size

Returns the current values for the Sphere element options in Postprocess->Mesh elements preferences window.

info_sphere_size_factor "analysis_name" "step_value" "result_name" "component_name"

Returns the current sphere element factor for "analysis_name" "step_value" "result_name" "component_name".

Lines:

info_line_size

Returns the current values for the Line element options in Postprocess->Mesh elements preferences window.

legends and comments

GiD_Info postprocess get <option>

GiD v17

Copyright © 2024, GiD, CIMNE 195

The following <option> are available:

comments

Returns the comments that appear in different results views.

info_legend

Returns the current values showed in the legend.

legends_state

Returns the current values in Postprocess->Legends and comments preferences window.

contour fill

GiD_Info postprocess get <option>

The following <option> are available:

contour_limits

Returns the minimum and maximum value of the contour limits. Before each value, the word STD appears if the

contour limit value is the default value, and USER if it is defined by the user.

cur_contour_limits

Returns the minimum and maximum value of the current value.

cur_contour_color_config

Returns the current values in the More color options window in Postprocess->Contour fill and lines preferences

window.

contour_lines_width

Returns the contour lines width value.

current_color_scale

Returns a list of the colors used for the color scale; the first element of the list is the number of colors. Each

color is represented in RGB hexadecimal format. #RRGGBB

Example: #000000 would be black, and #FFFFFF would be white.

colour_map_list

Returns the list of available color maps for contour fill visualization

vector

GiD_Info postprocess get <option>

The following <option> are available:

cur_vector_factor <results_view_type> <result_name> ?<component_name>? <analysis_name>

<step_value>

Returns the current vector factor of the result "results_view_type" "result_name" "component_name"

"analysis_name" "step_value".

vector_detail

Returns the current value for vector detail option.

vector_size

Returns the current value for vector size option.

AllVectors

Returns Yes if the draw interior vectors option is enabled, No if don't.

VectorNumCols

Returns the current number of colors for vectors when the color mode is set to "by modules".

GiD v17

Copyright © 2024, GiD, CIMNE 196

VMonoColor

Returns the current color for vectors when the color mode is set to "monochrome".

Note: this command is deprecated, can get/set its value as a regular variable with GiD_Set PostVectors

(MonoColor)

VectorTensionColour

Returns the current color for tension vector color option.

Note: this command is deprecated, can get/set its value as a regular variable with GiD_Set PostVectors

(TensionColor)

VectorCompressionColour

Returns the current color for compression vector color option.

Note: this command is deprecated, can get/set its value as a regular variable with GiD_Set PostVectors

(CompressionColor)

VectorColour

Returns the current color mode for vectors.

VectorOffset

Returns the current value for vector offset option.

VectorFilterFactor

Returns the current value for vector filter factor option.

iso surfaces

GiD_Info postprocess get <option>

The following <option> are available:

iso_all_display_styles

Returns a list of all available display styles for isosurfaces.

iso_cur_display_style

Returns the current display style for isosurfaces.

iso_all_display_renders

Returns a list of all types of rendering available for isosurfaces.

iso_cur_display_render

Returns the current rendering method for isosurfaces.

iso_cur_display_transparence

Returns Opaque or Transparent depending on the current transparency of isosurfaces.

iso_cur_result_values

Returns the current result values of isosurfaces.

isosurface_options

Returns the current values in Postprocess->Iso surfaces preferences window.

stream lines

GiD_Info postprocess get <option>

The following <option> are available:

info_stream_line_size

Returns the stream line size value.

GiD v17

Copyright © 2024, GiD, CIMNE 197

result_stream_lines_options

Returns the current stream lines detail render, the color mode, the color of monochrome mode and the initial

rotation. The values can be found in Postprocess->Stream lines preferences window.

stream_draw_arrows Arrows|ArrowsSize|ArrowsFreq|ArrowsColor

Returns the current values for draw arrows?, arrows size, arrows frequency or arrows color option.

stream_label

Returns the current value for stream line label option.

stream_length

Returns the current value for stream line maximum lenght option.

stream_max_points

Returns the current value for stream line maximum points option.

result surface

GiD_Info postprocess get <option>

A 'result surface' is basically a surface-graph drawn in the local axis of the surface elements (the result value

represented normal to the surface)

The following <option> are available:

cur_result_surface_factor <results_view_type> <result_name> <component_name> <analysis_name>

<step_value>

Returns the current surface factor of the result "results_view_type" "result_name" "component_name"

"analysis_name" "step_value".

result_surface_options

Returns the current values in Postprocess->Result surface preferences window.

line diagrams

GiD_Info postprocess get <option>

The following <option> are available:

A 'line diagram' is basically a graph drawn in the local axis of the line elements, used for example to represent in

bars graphs of bending moments, shear and axial efforts, etc.

cur_diagram_factor <result_name> <analysis_name> <step_value>

Returns the current diagram factor of "result_name" "analysis_name" "step_value".

diagram_options

Returns the current value in Postprocess->Line diagrams preferences window.

others

The following <option> are available:

changed_analysis_step

Returns 1 if the analysis step has changed from the last query, 0 if has not changed.

changed_results_view

Returns 1 if the results view has changed from the last query, 0 if has not changed.

changed_geom_list

Returns 1 if the geometry has changed from the last query, 0 if has not changed.

changed_graph_list

Returns 1 if the graph list has changed from the last query, 0 if has not changed.

GiD v17

Copyright © 2024, GiD, CIMNE 198

Results_Preference <result_name> <visualization> <property>

Returns the current value of the preference defined by "result_name" "visualization" "property".

scale_result_options

Returns the current values for options in Utilities->Scale result view menu.

view_follows_node_options

Returns the current values for "view centered and following node" in the Window->Animate window.

GiD_Info problemtypepath

GiD_Info problemtypepath

This command returns the absolute path to the current problem type.

GiD_Info project

GiD_Info Project <item>?

This command returns information about the project. More precisely, it returns a list with:

 Problem type name.

 Current model name.

 'There are changes' flag.

 Current layer to use.

 Active part (GEOMETRYUSE, MESHUSE, POSTUSE or GRAPHUSE).

 Quadratic problem flag.

 Drawing type (normal, polygons, render, postprocess).

 NOPOST or YESPOST.

 Debug or nodebug.

 GiD temporary directory.

 Must regenerate the mesh flag (0 or 1).

 Last element size used for meshing (NONE if there is no mesh).

 BackgroundFilename is the name of a background mesh file to assign mesh sizes.

 RequireMeshSize. (1 if all sizes are specified by the number of divisions, then user is not required to specify

the mesh size)

 RecommendedMeshSize. (The value of the mesh size that the program will recommend, based on the

model size)

 HelpAboutMoreInfo (extra information)

 GeoVersion (the current version of the .geo file)

 SomeFigureWithItsMesh (0 or 1, to know if mesh is linked to geometry)

It is possible to ask for a single item only rather than the whole list, with <item> equal to:

ProblemType | ModelName | AreChanges | LayerToUse | ViewMode | Quadratic | RenderMode |

ExistPost | Debug | TmpDirectory | MustReMesh | LastElementSize | BackgroundFilename |

RequireMeshSize | RecommendedMeshSize | HelpAboutMoreInfo | GeoVersion

| SomeFigureWithItsMesh

Example:

in: GiD_Info Project

out: "cmas2d e:\models\car_model 1 layer3 MESHUSE 0 normal YESPOST nodebug C:\TEMP\gid2 0 1.4 0"

in: GiD_Info Project ModelName

out: "e:\models\car_model"

GiD_Info unitssystems

GiD_Info unitssystems ?gid|prj|usersys|modunit|prbsys|udstate|magused?

(problemtype classic only)

return information about the sytems of units

GiD v17

Copyright © 2024, GiD, CIMNE 199

GiD_Info unitssystems

return 1 if the problemtype is using units, 0 else

GiD_Info unitssystems gid|prj|usersys|modunit|prbsys|udstate|magused

 gid

It return a list with the names of the units systems defined in the file gid.uni

 prj

It return a list with the names of the units systems of the project defined in the file <problemtype>.uni

 usersys

It return a list with the names of the units systems defined at runtime by the user (in case that it is not disabled

by <problemtype>.uni)

 modunit

It return information about the current length units of the model.

Return a list with three items like "LENGTH 1 0" or "LENGTH 2 1"

the first item is LENGTH, the magnitude name of length

the second item is the index in magnitudes of the current length unit

the third item is 0 if length is defined in the 'gid units set' or 1 if it is defined in the 'problemtype units set'

e.g.

in:

lassign [GiD_Info unitssystems modunit] magnitude_name unit_index set_index

set model_length_unit [lindex [GiD_Info magnitudes $set_index $magnitude_name $unit_index] 1]

out: m

 prbsys

Is the name of the current unit system to use for the model

 udstate

return the 'user defined systems' state: 0 or 1 (0 disabled, 1 enabled)

 magused

List of names of magnitudes used by the model (some magnitudes defined in gid.uni could be neglected to not

show them)

GiD_Info variables

GiD_Info variables ?-expand_array_names? ?-mesh? ?<variable_name>?

GiD_Info variables

It returns a sorted list of the GiD variables, including the ones related to meshing

Note: For array-like names it only return the base name, the array names can be obtained in a second step with

GiD_Set -array_names <variable_base_name>.

If -expand_array_names is used then instead the base names it replace them by the list of expanded names

GiD_Info variables -mesh

If returns a sorted list of the GiD meshing variables only.

GiD_Info variables <variable_name>

This command returns the value of the variable indicated.

Note: this command is deprecated to get a variable value. The more modern GiD_Set command can be used to

get or set the value of a GiD variable, look into Special Tcl commands>Other for more information.

GiD variables can be found in the Right buttons menu (see UTILITIES>Tools from Reference Manual), under

the option Utilities -> Variables.

GiD v17

Copyright © 2024, GiD, CIMNE 200

{x -13.41030216217041 13.41030216217041} {y 10.724431991577148

-10.724431991577148} {z -30.0 30.0} {e 10.0} {v 0.0 0.0 0.0} {r 1.0}

{m 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0} {c

0.0 0.0 0.0} {pd 0.0} {pno 0.0} {pfo 0.0} {pf 4.0} {pv 0.0} {NowUse 0}

{DrawingType 0} {LightVector 90.0 90.0 150.0 0.0}

GiD_Info view

GiD_Info view

This command returns the current view parameters. Something like:

See VIEW>View entry>Save/Read View of Reference Manual for a brief explanation of this parameters

Special Tcl commands

GiD add to the standard Tcl/Tk keywords some extra commands, to do specific thinks.

Project

GiD_Project batchfile | set | windows_layout | view | transform_problemtype | write_template

Command including a collection of subcommands

GiD_Project batchfile

To handle the batch file where processed commands are recorded

GiD_Project set <option> ?<value>?

To set on off or ask the current state of some options, to control the redraw and wait state of GiD:

option could be

disable_graphics|disable_windows|disable_warnline|disable_graphinput|disable_graphinterp|disable_writebatch|

0|1

last_general_mesh_size <size> with <size> a real number > 0.0

GiD_Project set windows_layout value <1 | 2LR | 2UD | 3L | 3U | 3R | 3D | 4 | EXT>

GiD_Project set changes_dataset <dataset> 0|1

GiD_Project view <option> ?<value>?

To handle view parameters.

GiD_Project view clip_planes_x ?{left right}?

GiD_Project view clip_planes_y ?{top bottom}?

GiD_Project view clip_planes_z ?{near far}?

GiD_Project view clip_planes_margin ?value?

GiD_Project view rotation_vector ?{x y z}?

GiD_Project view rotation_factor ?value?

GiD_Project view rotation_matrix ?{v11 ... v44}?

GiD_Project view rotation_center ?{x y z}?

GiD_Project view perspective_distance ?value?

GiD_Project view perspective_ortho_near ?value?

GiD_Project view perspective_ortho_far ?value?

GiD_Project view perspective_factor ?value?

GiD_Project view perspective_view ?value?

GiD v17

Copyright © 2024, GiD, CIMNE 201

GiD_Project view mode ?GEOMETRYUSE|MESHUSE|POSTUSE|GRAPHUSE?

GiD_Project view render_mode ?value?

GiD_Project view ligth_vector ?{x y z ?w?}?

GiD_Project transform_problemtype <new_problemtype>

To update a model of a problemtype version to the new version

GiD_Project write_template <template> <filename_out>

To use a template .bas file to write an output file

GiD_Project db ?-fast?

read|save mesh|mesh_groups|mesh_local_axes|mesh_conditions|geometry|geometry_groups|geometry

Special command to read/save some files of the model database, must be used carefully and in correct order.

Initial use is to read mesh and associated data written by other auxiliary GiD instance (e.g. a remote meshing

service)

mesh .msh

mesh_groups .prj

mesh_local_axes .lax

mesh_conditions .lin

backup

GiD_Project backup

To allow save/read the model in a backup fast format

GiD_Project backup save <name>

To save as <name> the model. (name without the .gid extension)

GiD_Project backup read <name>

To read the model <name>, saved with backup-fast format

batchfile

GiD_Project batchfile

To handle the batch file where processed commands are recorded

GiD_Project batchfile get name

It returns the file name of the batch, associated to the current model

GiD_Project batchfile flush

To force flush in the file (e.g. to read its updated contents)

set

GiD_Project set <option> ?<0|1>?

To set on off or ask the current state of some options, to control the redraw and wait state of GiD:

<option> could be

disable_graphics|disable_windows|disable_progressbar|disable_warnline|disable_graphinput|disable_w

GiD v17

Copyright © 2024, GiD, CIMNE 202

GiD_Project set disable_graphics ?<0|1>?

The value 0/1 Enable/Disable Graphics (GiD does not redraw)

EXAMPLE to disable the redraw:

GiD_Project set disable_graphics 1

GiD_Project set disable_windows ?<0|1>?

The value 0/1 Enable/Disable Windows (GiD displays, or not, windows which require interaction with the user)

EXAMPLE to disable the interaction windows:

GiD_Project set disable_windows 1

GiD_Project set disable_progressbar ?<0|1>?

The value 0/1 Enable/Disable the progress bar (it could be usually of interest to disable_windows but show the

advance bar)

GiD_Project set disable_warnline ?<0|1>?

The value 0/1 Enable/Disable printing messages in the lower messages bar.

GiD_Project set disable_graphinput ?<0|1>?

The value 0/1 Enable/Disable GraphInput (enable or disable peripherals: mouse, keyboard, ...)

EXAMPLE to disable the peripherals input:

GiD_Project set disable_graphinput 1

GiD_Project set disable_disable_readbatch ?<0|1>?

The value 0/1 Enable/Disable reading the batch file.

GiD_Project set waitstate ?<0|1>?

The value 0/1 Enable/Disable the Wait state (GiD displays a hourglass cursor in wait state)

EXAMPLE to set the state to wait:

GiD_Project set waitstate 1

Note: Usually these command are used jointly, to temporary disable redraws to accelerate the process.

It is recommended for a Tcl developer to use the more 'user-friendly' procedures defined inside the file 'dev_kit.

tcl' (located in the \scripts directory). For example, to disable and enable redraws, you can use:

::GidUtils::DisableGraphics

::GidUtils::EnableGraphics

GiD_Project set windows_layout ?<1 2LR 2UD 3L 3U 3R 3D 4>?

To set or ask the layout of the drawing windows

1-> 1 window

2LR -> 2 windows placed horizontally (Left-Right)

2UD -> 2 windows placed vertically (Up - Down)

3L -> 3 windows, the biggest on the Left

3U-> 3 windows, the biggest Up

3R -> 3 windows, the biggest on the Right

3D -> 3 windows, the biggest Down

4 -> 4 windows

GiD_Project set last_general_mesh_size ?<size>?

The value <size> must be a real positive number to remember in memory the last general mesh size for the

next time

GiD_Project set changes_dataset <dataset> ?<0|1>?

To set or get if the dataset has changes and its file must be saved

GiD v17

Copyright © 2024, GiD, CIMNE 203

<dataset> must be one of: "GEOMETRY_DATASET","MESH_DATASET","MESH_DATA_DATASET","

RESULTS_DATASET",

"MESH_PREFERENCES_DATASET","GLOBAL_PREFERENCES_DATASET","LAYERS_DATASET","

GROUPS_DATASET","GROUP_ENTITIES_DATASET",

"CONDITIONS_DATASET","CONDITION_ENTITIES_DATASET","MATERIALS_DATASET","

INTERVALS_DATASET","DIMENSIONS_DATASET",

"UNITS_DATASET","LABELS_DATASET","LOCAL_AXES_DATASET","BACKGROUND_IMAGE_DATASET","

RENDER_DATASET",

"EMBEDDED_DISTANCES_DATASET","VIEW_DATASET"

Note: Can set the flag off all kind of datasets with GiD_ModifiedFileFlag set|get ?<value>?

view

GiD_Project view <option> ?<value>?

To handle view parameters

<option> could be

clip_planes_x|clip_planes_y|clip_planes_z|clip_planes_margin|rotation_vector|rotation_factor|rotation_m

if <value> is provided then the value is set, else the current values are get

GiD_Project view clip_planes_x ?{left right}?

Left and right clip planes, real values

GiD_Project view clip_planes_y ?{top bottom}?

Top and bottom clip planes, real values

GiD_Project view clip_planes_z ?{near far}?

Near and far clip planes

GiD_Project view clip_planes_margin ?value?

Margin between view and model box

GiD_Project view rotation_vector ?{x y z}?

Rotation vector

GiD_Project view rotation_factor ?value?

Rotation factor

GiD_Project view rotation_matrix ?{v11 ... v44}?

Rotation matrix (4x4)

GiD_Project view rotation_center ?{x y z}?

Rotation center

GiD_Project view perspective_distance ?value?

Perspective distance

GiD v17

Copyright © 2024, GiD, CIMNE 204

set template [file join $::GIDDEFAULT templates STL.bas]

set filename_out [GidUtils::GetTmpFilename .stl]

GiD_Project write_template $template $filename_out

GiD_Project view perspective_ortho_near ?value?

Perspective near plane

GiD_Project view perspective_ortho_far ?value?

Perspective far plane

GiD_Project view perspective_factor ?value?

Perspective factor

GiD_Project view perspective_view ?0|1?

1 if perspective conical visualization mode is active, 0 if false

GiD_Project view mode ?GEOMETRYUSE|MESHUSE|POSTUSE|GRAPHUSE?

Current view mode

GiD_Project view render_mode ?value?

Current render mode (integer)

GiD_Project view light_vector ?{x y z}?

Light direction in screen space (not in world space): x = horizontal, y = vertical, z = towards the user

The light is directional, not punctual, and the modulus doesn't matter (it is not necessary to be an unitary vector)

If {x y z} argument is missing it returns the current light direction

transform_problemtype

GiD_Project transform_problemtype <new_problemtype>

To invoke a transform to update the fields of conditions, materials, etc. of a model saved with a different

problemtype version to the current problemtype version.

<new_problemtype> is the name of the new problemtype to be transformed (assumed very similar to the old

problemtype to be successful)

write_template

GiD_Project write_template <template> <filename_out>

To use a template .bas file to write an output file

e.g. to export the current triangle mesh in STL format using the STL.bas template

db

GiD v17

Copyright © 2024, GiD, CIMNE 205

GiD_Project db

GiD_Project db ?-fast?

read|save mesh|mesh_groups|mesh_local_axes|mesh_conditions|geometry|geometry_groups|geometry

Special command to read/save some files of the model database. Do no use it: must be used carefully and read

in the correct order.

Initial use is to read mesh and associated data written by other auxiliary GiD instance (e.g. a remote meshing

service)

mesh .msh

mesh_groups .prj

mesh_local_axes .lax

mesh_conditions .lin

geometry .geo

geometry_groups .prj

geometry_local_axes .lax

geometry_conditions .lin

materials .mat

conditions .cnd

units .uni

render .rdr

embedded_distances .dst

detach_mesh_from_geometry

GiD_Project detach_mesh_from_geometry

To discard the storage of meshes by its owning geometrical entities.

This feature can become a bottleneck in some cases with a lot of geometrical entities.

GiD_Project detach_mesh_from_geometry is_attached

It returns 1 if the geometrical entities store its meshes.

Geometry

GiD_Geometry -v2 ?-no_model? create|delete|get|list|edit|exists point|line|surface|volume

<num>|append <data>

To create, delete, get data or list the identifiers of geometric entities:

 <num>|append: <num> is the entity identifier (integer > 0). You can use the word 'append' to set a new

number automatically.

 <data>: is all the geometric definition data (create) or a selection specification (delete, get or list):

GiD v17

Copyright © 2024, GiD, CIMNE 206

-v2 mean version 2 of this command (deprecated version 1 documentation must be seen in help of old versions

of the program).

If -no_model flag is specified then entities are stored in a special container, it doesn't belong to the model

create: to make new geometric entities (the parameters are explained in the get command, the result of get can

be used to create)

 GiD_Geometry -v2 create volume <num>|append volume|contactvolume <layer> {surface1...

surfacen} {o1...on} ?<transformation_matrix>?

for contactvolume is necessary to specify the <transformation_matrix> : a vector of 16 reals representing a 4x4

transformation matrix that maps surface1 into surface2

 GiD_Geometry -v2 create surface <num>|append

planarsurface|nurbssurface|coonsurface|meshsurface|contactsurface <layer> <trimmed>|-

interpolate {line1...linen} {o1...on} <geometrical_data>

<geometrical data> depends of each entity type (see get command)

-interpolate is only valid for nurbssurface, and then must only provide {line1...linen}, but not {o1...on} or

<geometrical_data>

and in this case the lines must not be a closed boundary, but a series of near-parallel curves, to create a

surface interpolating them.

 GiD_Geometry -v2 create line <num>|append stline|nurbsline|arcline <layer> <inipoint> <endpoint>

<geometrical_data>

Instead the NURBS parameters is possible to create a curve that interpolates a list of points (also tangents at

start and end can be specified)

 GiD_Geometry -v2 create line <num> | append nurbsline <layer> <inipoint> <endpoint> {-interpolate

{p1_x p1_y p1_z ... pn_x pn_y pn_z} ?-tangents {t0_x t0_y t0_z} {t1_x t1_y t1_z}?}

 GiD_Geometry -v2 create line <num>|append stline <layer> <inipoint> <endpoint>

 GiD_Geometry -v2 create point <num>|append <layer> <point_x> <point_y> <point_z>

delete: to erase model entities

 GiD_Geometry -v2 delete ?-also_lower_entities? point|line|surface|volume {id_1> ... <id_n>}

To delete the geometric entities with this ids.

-also_lower_entities to delete also its dependent lower-entities when possible (nod depend on other higher-

entities or have applied conditions)

{id_1> ... <id_n>} is an objarray of integers (can use a GiD_Geometry list command to select filtered entities,

like the surfaces of a layer, etc.)

get: to obtain all the geometrical data to define a single entity

 GiD_Geometry -v2 get point|line|surface|volume <args>

with <args>: num ?line_uv <line_index> | index_boundaries | has_holes | render_mesh | mesh | material?

line_uv <line_index> extra arguments must be only used in case of nurbs surfaces, to get the information of the

GiD v17

Copyright © 2024, GiD, CIMNE 207

<line_index> curve (integer from 1 to the number of trimming curves) on the surface, defined in its uv space

parameter.

index_boundaries extra argument to get an objarray of integers with the index of the list of curves where each

boundary start.

If the surface doesn't has any hole, it return 0 (the start index of the outer loop)

It the surface has holes it return an index by hole (the start index or the hole inner loop)

has_holes: it return 0 if the surface doesn't has any hole, 1 else

-v2 mean version 2 of this command and then return this data (deprecated version 1 documentation must be

seen in help of old versions of the program)

 GiD_Geometry -v2 get point <num>

will return:

<layer> <geometrical data>

<layer> is the layer name

<geometrical data> the coordinates x y z

 GiD_Geometry -v2 get line <num>

will return:

<type> <layer> <p1> <p2> <geometrical data>

<type> can be: stline, nurbsline, arcline, polyline

<layer> is the layer name

<p1> identifier of start point

<p2> identifier of end point

<geometrical data> item depends of each entity type

stline: nothing

nurbsline: <d> <n> {x y z ... x y z} {w ... w} {k ... k}

<d>degree of the polynomials

<n> number of control points

<xi yi zi> control points coordinates (objarray of 3*n double values)

<wi> are the weights associated to each control point (objarray of double values. Empty array if is non-rational)

<ki> knots (the amount of knots = amount of control points+degree+1

arcline: <xc> <yc> <r> <sa> <ea> {m11 ... m44}

<xc> <yc> 2D center

<r> radius

<sa> <ea> start and end angle (rad)

{m11 ... m44} transformation 4x4 matrix (the identity for a 2D case)

m11 ...m33 is a rotation 3x3 matrix

m14 ...m34 is a translation 3x1 vector

m44 is an scale factor

m41 ... m43 must be 0

polyline: <line line> <orientation ... orientation>

<line ...> is a list with the data of each sub-line of the polyline

<orientation ... orientation> is an objarray of values 0 or 1 (0==natural orientation, along tangent, 1== opposite

direction)

GiD v17

Copyright © 2024, GiD, CIMNE 208

 GiD_Geometry get line <line_id> render_mesh

Will return the information of the render mesh of the line <line_id> as a list: {element_type element_num_nodes

coordinates connectivities ts}

element_type: line

element_num_nodes: 2

coordinates: objarray with 3*num_nodes items of float with x y z of the render mesh nodes.

connectivities: objarray with element_num_nodes*num_elements of int with the connectivities of the elements

(zero-based)

ts: optional objarray with num_nodes items of float with t space parameters (from 0.0 to 1.0) of each node. (it is

optional, the array could have zero length)

 GiD_Geometry -v2 get surface <num>

will return:

<type> <layer> <trimmed> {l1 ... ln} {o1 ... on} <geometrical data>

<type> can be: nurbssurface planarsurface coonsurface meshsurface

<layer> is the layer name

<trimmed> 1 if the surface valid part is a trim of a bigger underlying shape, 0 else

{li...} objarray of integer identifiers of the surface lines (outer and inner boundaries)

{o1 ... on} orientation of the lines for the surface (0==natural orientation, along tangent, 1== opposite direction)

Note: turning left of a line with orientation 0 must points inside the surface.

<geometrical data> depends of each entity type

planarsurface: nothing

coonsurface: nothing

nurbssurface <du> <dv> <nu> <nv> {x y z ... x y z} {w ... w} {ku ... ku} {kv ... kv}

<du> <dv>degree in u, v direction

<nu> <nv>number of control points in each direction

{xi yi zi} control points coordinates. (objarray of 3*nu*nv double values)

<wi> are the weights associated to each control point (objarray of double values. Empty array if is non-rational)

<kui> <kvi> knots in each direction

meshsurface: <nnode> {x1 y1 z1 ... xnn ynn znn} {a1 b1 c1 ?d1? ... ane bne cne ?dne?}

nnode: number of nodes by element: 3 or 4 (triangles or quadrilaterals)

xi yi zi: coordinates

ai bi ci di: connectivities (di only for quadrilaterals)

 GiD_Geometry get surface <surface_id> line_uv <line_index>

will return the information of the curve in uv space of the surface <surface_id>, with similar format as

GiD_Geometry get line <num> in case of a nurbs curve.

 GiD_Geometry get surface <surface_id> has_holes

Return a boolean 1 or 0 indicating if the surface is trimmed with inner holes.

 GiD_Geometry get surface <surface_id> index_boundaries

Return an objarray of int of num_holes+1 items with the index in the list of boundary curves where each loop

starts (the first is the outer loop and then the inner loops)

 GiD_Geometry get surface <surface_id> ?-force? render_mesh

GiD v17

Copyright © 2024, GiD, CIMNE 209

Will return the information of the render mesh of the surface <surface_id> as a list: {element_type

element_num_nodes coordinates connectivities normals uvs}

use -force flag to create the render mesh if it was not created.

element_type: triangle or quadrilateral

element_num_nodes: 3 or 4

coordinates: objarray with 3*num_nodes items of float with x y z of the render mesh nodes.

connectivities: objarray with element_num_nodes*num_elements of int with the connectivities of the elements

(starting by zero)

normals: optional objarray with 3*num_nodes items of float with x y z of the render mesh normals. (it is optional,

the array could have zero length)

uvs: optional objarray with 2*num_nodes items of float with u v space parameters of each node. (it is optional,

the array could have zero length)

 GiD_Geometry -v2 get volume <num>

will return:

<type> <layer> {s1 sn} {o1 ... on}

<type> can be: volume or contactvolume

<layer> is the layer name

{si} identifier of surfaces bounding the volume (including holes. the first must be the outer boundary)

{oi} are its orientation for the volume (0 along to the surface normal, 1 opposite)

Note: the normal of a surface with orientation 0 points inside the volume

 GiD_Geometry get volume <volume_id> has_holes

Return a boolean 1 or 0 indicating if the volume has inner holes.

 GiD_Geometry get volume <volume_id> index_boundaries

Return an objarray of int of num_holes+1 items with the index in the list of boundary surfaces where each shell

starts (the first is the outer shell and then the inner shells)

 GiD_Geometry get point|line|surface|volume <id> mesh

Will return the information of the mesh of the geometric entity <id> as a list: {element_type element_num_nodes

node_ids coordinates element_ids connectivities ?radius_and_normals?}

element_type: string

element_num_nodes: integer with the amount of nodes of an element (all mesh elements are of same type)

node_ids: objarray of integers with num_nodes items, where num_nodes is the amount of nodes of the

elements of this mesh (node id one-based)

coordinates: objarray with 3*num_nodes items of double with x y z of the mesh nodes.

element_ids: objarray of integers with num_elements items (element id one-based)

connectivities: objarray with element_num_nodes*num_elements of int with the connectivities of the elements

(one-based)

radius_and_normals: only for sphere and circle elements. objarray with num_elements items of double with the

radius of each element or num_elements*4 items for circles, with the radius and the normal 3D vector (normal

to the plane of the circle).

 GiD_Geometry get surface|volume <id> mesh_boundary

GiD v17

Copyright © 2024, GiD, CIMNE 210

Will return the information of the boundary of the mesh of the geometric entity <id> as a list: {element_type

element_num_nodes connectivities}

element_type: string

element_num_nodes: integer with the amount of nodes of an element (all mesh elements are of same type).

Can be also a quadratic mesh, whit more nodes than the linear ones of the corners.

connectivities: objarray with element_num_nodes*num_elements of int with the connectivities of the elements

(one-based)

a volume with a mesh of prisms or pyramid will have as boundary a mix of quadrilateral and triangles, all are

expressed as quadrilaterals (triangles will write the 4th node repeating the last id)

It is not returned any information of node_ids, coordinates or element_ids.

the list of node_ids can be obtained easily with something like this, sorting the ids of connectivities removing

duplicates

set node_ids [objarray sort -unique [lindex [GiD_Geometry get volume $volume_id mesh_boundary] 2]]

or

set node_ids [lsort -unique -integer [lindex [GiD_Geometry get volume $volume_id mesh_boundary] 2]]

the coordinates could be obtained from the node_ids with other commands like GiD_Mesh get node

element_ids are not returned because the boundary faces doesn't exists explicitly in GiD, and then they don't

have a number

 GiD_Geometry get point <id> node

Will return the information of the mesh nod of this point, if any.

Can return "" is there is not any node, the integer node num if it has a node (but the number could be 0 in case

of an 'internal' node, not visible)

 GiD_Geometry get point|line|surface|volume <id> material

Will return an integer with its material index

 GiD_Geometry get point|line|surface|volume <id> label_on

Will return 1 if the label flag is set to on (to be shown), 0 otherwise

 GiD_Geometry get point|line|surface|volume <id> selected

Will return 1 if the selected flag is set to on (to be drawn in red), 0 otherwise

 GiD_Geometry get point|line|surface <id> higherentity

Will return an integer >=0 with the counter of parent entities using this entity.

It is not defined for volume because this is the top category and doesn't has any parent.

 GiD_Geometry get point <id> forced surface|volume

In case of being a point forced to be meshes as a node of a surface or volume it return the id of this geometrical

entity

GiD v17

Copyright © 2024, GiD, CIMNE 211

list: to get a list of entity identifiers of a range or inside some layer

 GiD_Geometry list ?<filter_flags>? point|line|surface|volume ?<args>?

<filter_flags> could be: ?-count? ?-unrendered? ?-higherentity <num_higher>? ?-material <id_material>? ?-

layer <layer_name>? ?-plane {a b c d r}? ?-avoid_frozen_layers? ?-mesh_data

element_type|structured|meshing|size|skip|boundary_layer|mesher|point_forced_to?

-count to return the amount of entities instead of the objarray with its ids

-unrendered flag is only valid for surface

-higherentity <num_higher> to filter the selection and list only the entities with the amount of parents equal to

<num_higher> (integer >=0)

-material <id_material>to filter the selection and list only the entities with material id equal to <id_material>

(integer >=0)

-layer <layer_name> to filter the selection and list only the entities with layer equal to <layer_name>

-plane <a b c d r> to list only the entities with center that match the plane equation a*x+b*y+c*z+d<=r

-entity_type <types_allowed> to list only the entities of a type contained in <types_allowed>, that must be a list

of allowed types ("STLINE | ARCLINE |POLYLINE | NURBLINE | NURBSURFACE PLSURFACE

COONSURFACE MESHSURFACE CONTACTSURFACE VOLUME CONTACTVOLUME")

-avoid_frozen_layers to ignore the entities on layers frozen

-mesh_data allow to list entities depending on extra meshing information attached to them:

-mesh_data element_type <element_type> line|surface|volume

-mesh_data structured full|semi|center line|surface|volume

-mesh_data meshing duplicate line|surface

-mesh_data meshing tobemeshed_yes|tobemeshed_no point|line|surface|volume

-mesh_data size point|line|surface|volume

-mesh_data skip point|line

-mesh_data boundary_layer line|surface

-mesh_data mesher <mesher_id> surface|volume

-mesh_data point_forced_to surface|volume point

<args>: <num>|<num_min>:<num_max>

<num_max> could be 'end' to mean the last index

if <args> is not provided it is considered as 1:end, and then all ids are returned

edit: to modify some option

 GiD_Geometry edit point|line|surface|volume <num> material|label_on|selected <value>

<num> the entity id

<material> to set the material number (value>=0)

<label_on> to set the label flat (value 0 or 1)

<selected> to set the selection flag (value 0 or 1)

exists: to check if a single entity exists or not

GiD v17

Copyright © 2024, GiD, CIMNE 212

GiD_Geometry create surface 1 nurbssurface Layer0 0 {1 4 3 2} {1 1 1 1}

\

{1 1 2 2 {0.17799 6.860841 0.0 -8.43042200 6.86084199 0.0 0.17799400

0.938510 0.0 -8.43042 0.938510 0.0} \

{} {0.0 0.0 1.0 1.0} {0.0 0.0 1.0 1.0}}

GiD_Geometry list -layer Layer0 point

GiD_Geometry list -higherentity 0 surface

GiD_Geometry list -unrendered surface

GiD_Geometry list -entity_type {nurbline arcline} line

 GiD_Geometry exists point|line|surface|volume <id>

Return 1 if exists, 0 otherwise

Examples:

Creation of a new NURBS surface:

Get the list of points of the layer named 'Layer0':

Get the list of surfaces that not belong to any volume:

Get the list of problematic surfaces that couldn't be rendered:

Get the list of lines of type nurbline or arcline

Dimension

GiD_Dimension create|delete|edit|get|list <num>|append <data>

To create, delete, get data or list the identifiers of dimensions:

 <num>|append: <num> is the entity identifier (integer > 0). You can use the word 'append' to set a new

number automatically.

 <data>: is all the dimension definition data, depending on each type (create) or a selection specification (

delete, get or list):

create: to make new dimension

 GiD_Dimension create <num>|append {<layer> <type> <text> <show_box> <more_data...>}

GiD v17

Copyright © 2024, GiD, CIMNE 213

<type>: vertex distance angle radius text

<text>: the text to be showed

<show_box>: boolean 0|1 to hide or show a box around the text

 GiD_Dimension create <num>|append {<layer> vertex <text> <show_box> <p_x p_y p_z> <text_x

text_y text_z>}

<p_x p_y p_z> real coordinates of the vertex

<text_x text_y text_z> real space coordinates where the text is placed

 GiD_Dimension create <num>|append {<layer> distance <text> <show_box> <p1_x p1_y p1_z> <p2_x

p2_y p2_z> <text_x text_y text_z>}

<p1_x p1_y p1_z> and <p2_x p2_y p2_z> real coordinates of two vertex for a distance

 GiD_Dimension create <num>|append {<layer> angle <text> <show_box> <vertex_x vertex_y

vertex_z> <p1_x p1_y p1_z> <p2_x p2_y p2_z> <text_x text_y text_z>}

<vertex_x vertex_y vertex_z> real coordinates of the vertex corner for an angle dimension

 GiD_Dimension create <num>|append {<layer> radius <text> <show_box> <p_arc_x p_arc_y

p_arc_z> <center_x center_y center_z> <text_x text_y text_z>}

<p_arc_x p_arc_y p_arc_z> real coordinates of a point on the arc curve

<center_x center_y center_z> real coordinates of the arc center

 GiD_Dimension create <num>|append {<layer> text <text> <show_box> <text_x text_y>}

<text_relative_x text_relative_y> real 2D coordinates of the text in screen, in a range from -1.0 to 1.0 (0.0,

0.0 is the center of the screen)

delete: to erase dimensions

 GiD_Dimension delete <num>|<numa>:<numb>|layer:<layer_name>

<num> the integer id of the dimension to be deleted

<numa>:<numb> (the range from <numa> to <numb>, the word 'end' can be used for numb, e.g. use 1:end to

delete all)

layer:<layer_name> : to delete the dimensions of this layer

edit: to modify a dimension

 GiD_Dimension edit <num> text|show_box|selected <new_value>

<num> the integer id of the dimension to be modified

text <new_text> to modify the text shown by the dimension

show_box 0|1 to show or not the bow drawn around the text

selected 0|1 to be drawn in red when selected flag is true

get: to obtain all the dimension data to define a single entity

 GiD_Dimension get <num> ?type|text|show_box|selected?

GiD v17

Copyright © 2024, GiD, CIMNE 214

set new_id [GiD_Dimension create append {Layer0 text 1 "hello world"

{0.0 1.0}}]

set ids [GiD_Dimension list -layer Layer0]

set all_ids [GiD_Dimension list]

GiD_Dimension get 2

GiD_Dimension delete 1:end

<num> the integer id of the dimension to get its data

the kind of data returned depends on the dimension type (see create command)

if the optional argument type, text or show_box is provided instead of all data it is returned only this information.

list: to get a list of dimension identifiers of a range or inside some layer

 GiD_Dimension list ?<filter_flags>? ?<args>?

<filter_flags> could be: ?-count? ?-layer <layer_name>? ?-avoid_frozen_layers?

-count to return the amount of entities instead of the objarray with its ids

-layer <layer_name>to filter the selection and list only the entities with layer equal to <layer_name>

-avoid_frozen_layers to ignore the entities on layers frozen

<args>: <num>|<num_min>:<num_max>

<num_max> could be 'end' to mean the last index

if <args> is not provided it is considered as 1:end, and then all ids are returned

Examples:

Creation of a new dimension of text with the text "hello word" in the center-top of the screen, inside a layer

named Layer0 that must exists

Get the list of ids of dimensions that belong to the layer Layer0

Get the list of all dimensions

Get the information of the dimension id==2

Delete all dimensions

Mesh data

GiD v17

Copyright © 2024, GiD, CIMNE 215

GiD_MeshData

size|size_by_chordal_error|size_background_mesh|size_correct|unstructured|mesher|structured|semi_s

To assign mesh data to geometrical entities

GiD_MeshData size points|lines|surfaces|volumes <size> <ids>

To assign desired mesh size to geometrical entities

<size>: double, the desired mesh size.

<ids>: objarray of integers with the ids of the geometrical entities to be meshed with this size

GiD_MeshData size_by_chordal_error <min_size> <max_size> <chordal_error>

To assign sizes to the whole model, based on a chordal error (distance from the approximated mesh to shape

of the geometry). The values calculated cannot be outside the range [min_size, max_size]

GiD_MeshData size_background_mesh <filename>

To assign the mesh sizes using an auxiliary file with 'background mesh format' (a mesh covering the domain

with desired sizes on nodes or elements)

GiD_MeshData size_correct <max_size>

To modify the current assigned sizes to be 'more feasible' (some assigned sizes can be decreased to avoid

strong spatial change of sizes)

GiD_MeshData unstructured lines|surfaces|volumes <ids>

To set entities to be meshed unstructuredly (with assigned or general size)

GiD_MeshData mesher surfaces|volumes default|rfast|rsurf|advancingfront|tetgen|octree <ids>

To set entities with the kind of meshing algorithm to be used to mesh them unstructured

GiD_MeshData structured lines|surfaces|volumes ?<ids_surfaces_or_volumes>?

num_divisions|num_divisions_by_size|weights <num_divisions>|<size>|{<w1> <w2>} <ids_lines>

To set entities to be meshed structuredly, setting the number of divisions in some of its lines.

<ids_surfaces_or_volumes>: objarray of integers (only in case of surfaces or volumes)

num_divisions <num_divisions>: integer amount of mesh divisions to be assigned to the lines

num_divisions_by_size <size>: an alternative double value, it is an approximated size that will be converted to

an integer number of divisions base on each line length.

weights {<weight_start> <weight_end>}: to set a not uniform size, assigning weights (double value from -1.0 to

1.0) to start and end of the lines.

<ids_lines>: objarray of integers with the ids of the lines to be assigned the number of divisions.

 GiD_MeshData structured lines num_divisions <num_divisions> <ids_lines>

 GiD_MeshData structured lines num_divisions_by_size <size> <ids_lines>

 GiD_MeshData structured lines weights {<weight_start> <weight_end>} <ids_lines>

 GiD_MeshData structured surfaces|volumes <ids_surfaces_or_volumes>

num_divisions|num_divisions_by_size <num_divisions>|<size> <ids_lines>

GiD_MeshData semi_structured <num_divisions>|master_surfaces|structured_directions <ids>

 GiD_MeshData semi_structured <num_divisions> <ids_volumes>

To set volumes to be meshed semi-structuredly, setting the amount of divisions in the structured direction.

 GiD_MeshData semi_structured master_surfaces <ids_surfaces>

To expliciltly set the surfaces that will be meshed first and then extruded to the opposite tap. Before use this

command the volumes must be set as semi-structured

 GiD_MeshData semi_structured structured_directions <ids_lines>

To expliciltly set direction that define the extrusion direction. Before use this command the volumes must be set

as semi-structured.

GiD_MeshData element_type surfaces|volumes <element_type>|default <ids>

To set the type of element to be generated (default to restore its initial value)

GiD_MeshData mesh_criteria default_all|to_be_meshed|to_be_duplicated|force_points|skip

GiD v17

Copyright © 2024, GiD, CIMNE 216

<value|force_points_data> points|lines|surfaces|volumes <ids>

To set some mesh criteria to entities: (0=default, 1=no, 2=yes)

 default_all points|lines|surfaces|volumes <ids>

 to_be_meshed 0|1|2 points|lines|surfaces|volumes <ids>

 to_be_duplicated 0|1|2 lines|surfaces <ids>

 force_points surfaces|volumes <ids_to_force> points <ids>

 skip 0|1|2 point|lines <ids>

GiD_MeshData reset

To reset all meshing information data assigned to the model

GiD_MeshData boundary_layer assign|unassign lines|surfaces|all <parent_ids> {<num_layers>

<size_first_layer>} <ids>

To assign or unassign boundary layer mesh data

 GiD_MeshData boundary_layer assign lines|surfaces <parent_ids> {<num_layers>

<size_first_layer>} <ids>

To assign the boundary layer mesh data of a selection of lines (2D) or surfaces (3D).

<parent_ids>: objarray of integer ids of the parent entities (surfaces 2D, volumes 3D)

<num_layers>: integer, the desired amount of boundary layers

<size_first_layer>: double, the depth size of the first layer

<ids>: objarray of integer ids of the entities (lines 2D, surfaces 3D)

 GiD_MeshData boundary_layer unassign lines|surfaces <ids>

To unassign the boundary layer mesh data of a selection of lines (2D) or surfaces (3D)

 GiD_MeshData boundary_layer unassign all

To unassign the boundary layer mesh data of the whole model

GidUtils::GetMeshData

This Tcl procedure allow ask the MeshData information of a geometric entity ,with this syntax

GidUtils::GetMeshData <entity_type> <entity_id> ?<key>?

<entity_type>: point line surface volume

<entity_type>: the integer >0 of that identify the entity

<key>: Elemtype IsStructured Meshing size num_divisions weight tops SkipMesh BLMnlevels1 BLMnlevels2

BLMfirsth1 BLMfirsth2 Mesher

if key is omitted or "" it return all MeshData items, otherwise only the required item

out codes

Elemtype: 0 None 1 Linear 2 Triangle 3 Quadrilateral 4 Tetrahedra 5 Hexahedra 6 Prism 7 Only points 8

Pyramid 9 Sphere 10 Circle

Meshing: No Default Yes No,Duplicate Duplicate

SkipMesh: -1 No 0 Automatic 1 Yes

Mesher: 1 RFast 2 Rsurf 3 DelaunaySurf3 4 AdvancingFront4 5 MinElem 6 "Advancing front" 7 DelaunayVol7 8

Isosurface 9 Tetgen 10 Octree 11 PVolume11

weight: (w1,w2)

tops: semi-structured volumes codification (num_surface_1,num_surface_2),top surface global ids (if negative

mean that is also set as master)

GiD v17

Copyright © 2024, GiD, CIMNE 217

e.g. for the surface number 1 that has been set forced to be meshed

GidUtils::GetMeshData surface 1

IsStructured 0 Elemtype 0 size 0 Meshing Yes

GidUtils::GetMeshData surface 1 Meshing

Yes

Mesh

Preprocess mesh

The preprocess and postprocess meshes are different objects, and there are different commands for them.

GiD_Mesh

GiD_Mesh create|delete|edit|get|list|exists

To create, delete, modify, list or know information about mesh nodes or elements of the preprocess:

create: to create a new node or element

GiD_Mesh create node <num>|append <x y z>

 <num>|append: <num> is the identifier (integer > 0) for the node. You can use the word 'append' to set a

new number automatically. The number of the created entity is returned as the result.

 <x y z> are the node coordinates. If the z coordinate is missing, it is set to z=0.0.

GiD_Mesh create element <num>|append <elemtype> <nnode> <N1 ... Nnnode> <radius> <nx> <ny>

<nz> ?<matname>?

 <num>|append: <num> is the identifier (integer > 0) for the node. You can use the word 'append' to set a

new number automatically. The number of the created entity is returned as the result.

 <elemtype>: must be one of "Point | Line | Triangle | Quadrilateral | Tetrahedra | Hexahedra | Prism |

Pyramid | Sphere | Circle"

 <nnode> is the number of nodes an element has

 <N1 ... Nnnode> is a Tcl list with the element connectivities

 <radius> is the element radius, only for sphere and circle elements

 <nx> <ny> <nz> is the normal of the plane that contain the circle, must be specified for circle elements only

 <matname> is the optional element material name

delete: to delete one or more nodes or elements

GiD_Mesh delete ?-also_lower_entities? node|element <num_1 ... num_n>

-also_lower_entities to delete the elements and also its dependent nodes when possible (nod depend on other

elements or have applied conditions)

<num> is the identifier (integer > 0) for the node or element to be deleted. It is possible to use a list of multiple

ids.

GiD v17

Copyright © 2024, GiD, CIMNE 218

edit: to modify a node or element

GiD_Mesh edit node <num> <x y z>

GiD_Mesh edit element <num> <elemtype> <nnode> <N1 ... Nnnode> <radius> <nx> <ny> <nz> ?

<matname>?

Same syntax as create

or

GiD_Mesh edit node|element <num> material|label_on|selected <value>

<num> the entity id

<material> to set the material number (value>=0)

<label_on> to set the label flat (value 0 or 1)

<selected> to set the selection flag (value 0 or 1)

get: to get the information of a node or element

GiD_Mesh get node <num> ?coordinates|material|label_on|selected|higherentity?

It return the list: <node_layer> <x> <y> <z>

with the extra word

 coordinates only the <x> <y> <z> coordinates are returned

 material: the material integer id is returned

 label_on: 0 or 1 is returned (label flag)

 selected: 0 or 1 is returned (selection flag)

 higherentity: integer >=0 with the counter of parent elements using this node

GiD_Mesh get element <num>|from_face|from_edge|from_node ?

face|face_linear|num_faces|edge_linear|num_edges|normal|tangent|center|connectivities|geometry_sour

|material|label_on|selected

?<face_id>|<edge_id>??

 <num> is the identifier (integer > 0) for the element to be asked

 face optional, instead of the element nodes it returns the nodes of the face, first the linear corner nodes and

then the quadratic nodes

 face_linear optional, instead of the element nodes it returns only the linear corner nodes, also is the

element is quadratic

 num_faces returns the amount of faces of the element (for surface elements its edges act as faces)

 <face_id> is the local face index from 1 to the number of faces of the element. If <face_id> is missing then a

list with all faces is returned

 edge_linear optional, instead of the element nodes it returns only the linear edge nodes, also is the element

is quadratic

 num_edges returns the amount of edges of the element

 <edge_id> is the local edge index from 1 to the number of edges of the element. If <edge_id> is missing

then a list with all edges is returned

 normal return a 3D vector with the normal direction for surface elements (and for line elements in 2D the

normal to the tangent)

 tangent return a 3D vector with the tangent direction for line elements

 center return a 3D vector with the element center

GiD v17

Copyright © 2024, GiD, CIMNE 219

 connectivities return a list of integers with the element's nodes

 geometry_source return a list where the first item is the category:

POINT_LT|LINE_LT|SURFACE_LT|VOLUME_LT and then the integer ids of the geometric entity source of

the mesh element (usually one entity, but could be more than one meshing with Rjump)

 material: the material integer id is returned

 label_on: 0 or 1 is returned (label flag)

 selected: 0 or 1 is returned (selection flag)

get element return the list: <element_layer> <elemtype> <nnode> <N1> ... <Nnnode>

get element face|face_linear: <N1_face> ... <Nnnode_face>

get element edge_linear: <N1_edge> <N2_edge>

If from_face is specified then the command has this syntax

GiD_Mesh get element from_face <face_nodes> ?-ordered?

it find and return the list of element ids that have a face with these nodes

 <face_nodes> is the list of integer ids of the face nodes {<face_node_1> ... <face_node_n>} (only corner

lineal nodes must be specified in the list)

 if -ordered is specified then only faces with the same orientation of the nodes and start node of the GiD

faces definition will be taken into account (else the order of the face nodes doesn't matter)

If from_edge is specified then the command has this syntax

GiD_Mesh get element from_edge <edge_nodes>

it find and return the list of element ids that have an edge with these nodes

 <edge_nodes> is the list of integer ids of the edge nodes {<edge_node_1> <edge_node_2>} (only corner

lineal nodes must be specified in the list)

If from_node is specified then the command has this syntax

GiD_Mesh get element from_node <node_id>

it find and return the list of element ids that have this node

 <node_id> is the integer id of the node

Note: get element from_face, from_edge of from_node could be an expensive operation because the whole

mesh is traversed to find them.

GiD_Mesh get nodesdistance <num1> <num2>

returns the distance between two mesh nodes, specified by its numbers

list: to get a list of entity identifiers of a range, filtered with some conditionals

 GiD_Mesh list ?<filter_flags>? node|element|face ?<num>|<num_min:num_max>?

<filter_flags> could be: ?-count? ?-higherentity <num_higher>? ?-material <id_material>? ?-layer

<layer_name>? ?-plane {a b c d r}? ?-element_type <types_allowed>? ?-orphan? ?-avoid_frozen_layers?

-count to return the amount of entities instead of the objarray with its ids

-higherentity <num_higher> to filter the selection and list only the entities with the amount of parents equal to

<num_higher> (integer >=0)

-material <id_material>to filter the selection and list only the entities with material id equal to <id_material>

(integer >=0)

https://gidsimulation.atlassian.net/wiki/spaces/GRM/pages/2438073757/Structuration%2Btype

GiD v17

Copyright © 2024, GiD, CIMNE 220

GiD_Mesh create node append {1.5 3.4e2 6.0}

GiD_Mesh create element 58 triangle 3 {7 15 2} steel

GiD_Mesh delete element {58 60}

set triangles_and_quads [GiD_Mesh list -element_type {triangle

quadrilateral} element]

-layer <layer_name>to filter the selection and list only the entities with layer equal to <layer_name>

-plane <a b c d r> to list only the entities with center that match the plane equation a*x+b*y+c*z+d<=r (r>=0.0)

-element_type <types_allowed> to list only the elements of a type contained in <types_allowed>, that must be

a list of allowed types ("Point | Line | Triangle | Quadrilateral | Tetrahedra | Hexahedra | Prism | Pyramid |

Sphere | Circle")

-orphan to list only the orphan elements, that do not belong to the mesh of any geometrical entity,

-avoid_frozen_layers to ignore the entities on layers frozen

if <num> or <num_min:num_max> are not provided it is considered as 1:end, and then all ids are returned

In case of face it is returned a value with two lists: element_ids and face_index

Each face is identified by the element_id and the local face_index (form 1 to the number of faces of the element)

the valid flags are

GiD_Mesh list ?-unique? ?-normals_dotprod_threshold <threshold_value> -

higherentity|higherentity_not <higherentity> -element_type <list_of_types> face

-unique is to avoid repeat faces shared between multiple elements, only one is arbitrary retained

-normals_dotprod_threshold <threshold_value> is to get only the faces (edges really) that belong to the

surface elements with dot product of its normals below the threshold_value (from 1.0 to -1.0). e.g. -0.9 for

problematic faces of folded elements. In this case is implicit -higherentity 2 and -element_type {triangle

quadrilateral}

-higherentity <higherentity> is to get only faces that belong exactly to <higherentity> elements (an integer

number > 0)

-higherentity_not <higherentity> is to get only faces that not belong to <higherentity> elements

-element_type <list_of_types> is a list of types of elements (faces of other types are ignored). By now only

triangle, quadrilateral

Examples:

exists: to check the existence of an entity

 GiD_Mesh ?-pre|-post? exists node|element <id>

Note: another way to check if a node or element exists in old versions is to list it

e.g.

proc NodeExistsPre { node_id } {

set exists 0

if { [GiD_Mesh list node $node_id] == $node_id } {

set exists 1

}

return $exists

}

GiD v17

Copyright © 2024, GiD, CIMNE 221

package require objarray

set nodes_coordinates [objarray new doublearray -values {-4.64 -1.03

0.0 -4.65 1.66 0.0 -8.24 -1.03 0.0 -8.24 1.66 0.0}]

set element_connectivities [objarray new intarray -values {1 3 0 3 2 0}]

GiD_MeshPre create "" Triangle 3 -zero_based_array {}

$nodes_coordinates {} $element_connectivities

GiD_MeshPre

GiD_MeshPre create <layer_name> <element_type> <element_num_nodes> ?-zero_based_array?

<node_ids> <node_coordinates> <element_ids> <element_connectivities> ?<radius+?normals?>?

To create a preprocess mesh.

This command create all mesh nodes and elements in a single step (unlike GiD_Mesh that create each node or

element one by one)

 <layer_name>: the name of the layer where the nodes and elements will be created. If it is and empty string

then it defaults to the current layer in use.

 <element_type>: must be one of "point | line | triangle | quadrilateral | tetrahedra | hexahedra | prism |

pyramid | sphere | circle"

It could be "" if <element_num_nodes>==0 and <elements_ids> and <element_connectivities>, to define

only nodes.

 <element_num_nodes>: is the number of nodes an element has. All elements of the mesh must have the

same number of nodes.

 -zero_based_array: optional flag. By default node and element indexes start from 1, but setting this flag

indexes must start from 0.

 <node_ids>: list of node identifiers. If it is an empty list them numeration is implicitly increasing.

 <node_coordinates>: a list of real numbers with the thee coordinates of each node {x0 y0 z0 ... xnn-1 ynn-1 z

nn-1
}

It is valid a zero size array for <node_ids> and <node_coordinates> if the nodes of the elements already

exists

 <element_ids>: list of element identifiers. If it is an empty list them numeration is implicitly increasing.

 <element_connectivities>: a list of integers with the <element_num_nodes> nodes of each element: the id

of each node is the location on the vector of nodes, starting from 0

 <radius+normals>:

 <radius>:only for spheres. Is a list of reals with the radius or each sphere {r0 ... rne-1}

 <normals>:only for circles. Is a list of reals with the radius and normal to the plane or each circle {r0 nx0

ny
0

nz
0

... r
ne-1

nx
ne-1

ny
ne-1

nz
ne-1

}

It is valid a zero size array for <element_ids>, <element_connectivities> and <radius+normals> to create

only nodes.

Example: to create a mesh with 4 nodes and 2 triangles in the current layer in use.

Cartesian grid

GiD v17

Copyright © 2024, GiD, CIMNE 222

This command is only valid for preprocess

GiD_Cartesian get|set ngridpoints|boxsize|corner|dimension|coordinates|iscartesian|auto_calculated

<values>

To get and set cartesian grid properties

 ngridpoints: the number of values of the grid axis on each direction x, y,z (3 integers)

 boxsize: the size of the box of the grid on each direction (3 reals)

 corner: the location of the lower-left corner of the grid box (3 reals)

 dimension: the dimension of the grid: 2 for 2D or 3 for 3D

 coordinates: the list of grid coordinates on each direction (nx+ny+nz reals)

 iscartesian: (valid only for get) return 1 if current mesh is cartesian, 0 else.

 auto_calculated GEOMETRY|MESH|GEOMETRY_AND_MESH <mesh_size>: (valid only for set) to fill in

the GiD-calculated automatic values, based on the current geometry and/or mesh and the general mesh size

to be used.

Postprocess mesh

The preprocess and postprocess meshes are different objects, and there are different commands for them.

GiD_MeshPost

GiD_MeshPost create <mesh_name> <element_type> <element_num_nodes> ?-zero_based_array?

<node_ids> <node_coordinates> <element_ids> <element_connectivities> ?<radius+?normals?>? ?<r g

b a>?

To create a postprocess mesh.

This command create all mesh nodes and elements in a single step (unlike GiD_Mesh that create each node or

element one by one)

 <mesh_name>: the name of the mesh

 <element_type>: must be one of "point | line | triangle | quadrilateral | tetrahedra | hexahedra | prism |

pyramid | sphere | circle"

 <element_num_nodes>: is the number of nodes an element has. All elements of the mesh must have the

same number of nodes.

 -zero_based_array: optional flag. By default node and element indexes start from 1, but setting this flag

indexes must start from 0.

 <node_ids>: list of node identifiers. If it is an empty list them numeration is implicitly increasing.

 <node_coordinates>: a list of real numbers with the thee coordinates of each node {x0 y0 z0 ... xnn-1 ynn-1 z

nn-1
}

 <element_ids>: list of element identifiers. If it is an empty list them numeration is implicitly increasing.

 <element_connectivities>: a list of integers with the <element_num_nodes> nodes of each element: the id

of each node is the location on the vector of nodes, starting from 0

 <radius+normals>:

 <radius>:only for spheres. Is a list of reals with the radius or each sphere {r0 ... rne-1}

 <normals>:only for circles. Is a list of reals with the radius and normal to the plane or each circle {r0 nx0

ny
0

nz
0

... r
ne-1

nx
ne-1

ny
ne-1

nz
ne-1

}
 <r g b a>: optional color components, to set the mesh color. r g b a are the red, green, blue and alpha

transparency components of the color, must be real numbers from 0.0 to 1.0. If the color is not specified, an

automatic color will be set.

Tools

GiD v17

Copyright © 2024, GiD, CIMNE 223

GiD_Tools geometry|mesh

This GiD_Tools command pretends to have subcommands of tools specialized in some geometry or mesh tasks

Geometry

classify_connected_parts

GiD_Tools geometry classify_connected_parts <entity_type> <entity_ids> ?<forced_separator_ids>?

To split the input items of <entity_ids> in one or several parts where the entities of the part are connected

Two entities are assumed as connected only if they share a lowerentity boundary figure.

e.g lines sharing points, or surfaces sharing lines

but are considered not connected two surfaces that share only one point

if two figures only share a figure contained in <forced_separator_ids> they will be considered in diferent parts

<entity_type>: line | surface | volume

<entity_ids> objarray of integers with the entity identifiers (ids start from 1, not 0)

<forced_separator_ids> is an optional list of ids of entities of lower level that act as barrier and prevent consider

be connected

entities of lower level means for <entity_type> line -> point , surface -> line, volume -> surface

it returns a list where each item is an objarray of integers with the ids of the entities of each connected part

{<part1_1 ... part1_n1> ... <partn_1 ... partn_nn>}

mass_properties

GiD_Tools geometry mass_properties <volume_id>

To calculate the mass properties of volume, gravity center and inertia tensor of a volume

<volume_id> Is the of integer id of the volume to be computed

It returns a list with 3 items: mass {center_x center_y center_z} {Ixx Iyy Izz Ixy Iyz Ixz}

the 6 inertia values describe the symmetric 3x3 inertia tensor

Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

Note: this command is similar to GiD_Info listmassproperties, but this command is not computing inertias

Mesh

mass_properties

GiD_Tools mesh mass_properties <tetrahedra_ids> | -boundary_elements <triangle_ids>

To calculate the mass properties of volume, gravity center and inertia tensor of a volume, defined by a selection

GiD v17

Copyright © 2024, GiD, CIMNE 224

of tetrahedra or the selection of the triangles bounding the volume.

<tetrahedra_ids> A list of integer ids of the tetrahedra of the volume to be computed

<triangle_ids> A list of integer ids of the triangles that enclose a volume, with normals pointing inside.

It returns a list with 3 items: mass {center_x center_y center_z} {Ixx Iyy Izz Ixy Iyz Ixz}

the 6 inertia values describe the symmetric 3x3 inertia tensor

Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

Note: this command is similar to GiD_Info listmassproperties, but this command is not computing inertias

intersectvolumeslines

GiD_Tools mesh intersectvolumeslines <group_lines>

Specialized command that calculate the intersections of the line elements that belong to the group named

<group_lines> with the current mesh of hexahedra.

collapse

GiD_Tools mesh collapse ?-tolerance <tolerance>? ?-try_to_maintain_boundary 0|1? ?-ignore_layers

0|1? nodes <node_ids>|elements <element_ids>|mesh")

To collapse the entities of the mesh close to the tolerance distance. By default the current preference value is

used.

-try_to_maintain_boundary 0|1 : 1 default to set more priority to nodes on the boundary to preserve them.

-ignore_layers 0|1 : By default the current preference value is used. If 0 nodes on different layers won't be

joined.

mesh_boundary

GiD_Tools mesh mesh_boundary ?-separe_by 0|1|2|3? <element_ids>

To calculate the faces or the boundary of a selection of elements.

-separe_by can be

0 (default) to ignore layers and materials of elements calculating the boundary

1 to consider boundary a face between two elements with different layer

2 to consider boundary a face between two elements with different material

3 to consider boundary a face between two elements with different layer or material

<element_ids> is the list of element ids to calculate its boundary. All elements must be of the same type and

number of nodes.

For example can be set with the ids of the elements of a layer named $layer_name with [GiD_Mesh list -layer

$layer_name element]

It is a command similar to GiD_Geometry get surface|volume <id> mesh_boundary

GiD v17

Copyright © 2024, GiD, CIMNE 225

Will return the information of the boundary of the mesh of the geometric entity <id> as a list: {element_type

element_num_nodes connectivities}

element_type: string

element_num_nodes: integer with the amount of nodes of an element (all mesh elements are of same type).

Can be also a quadratic mesh, whit more nodes than the linear ones of the corners.

connectivities: objarray with element_num_nodes*num_elements of int with the connectivities of the elements

(one-based)

a volume with a mesh of prisms or pyramid will have as boundary a mix of quadrilateral and triangles, all are

expressed as quadrilaterals (triangles will write the 4th node repeating the last id)

Layers

Definition

GiD_Layers create|delete|edit|get|list|window|exists|is_forbidden_name

 GiD_Layers create <layer>

To create a new layer. <layer> must be the full name (e.g. if a layer B has as parent A then must use as

fullname A//B)

 GiD_Layers delete <layer>

To delete a layer

 GiD_Layers edit name|color|opaque|visible|frozen|parent|state|to_use <layer> <value>

To modify layer properties:

name: change its name

color: set the color to draw its entities (with format #rrggbbaa)

opaque: opaque or transparent (0 or 1)

visible: set visibility of its entities (0 or 1)

frozen: set frozen to disable select its entities (0 or 1)

parent: to change the parent of a layer

state: to change the layer state (normal, disabled or hidden). hidden layers are not listed or visible in

windows.

to_use: in this case <value> must not be providen, and <layer> is the one to be set as current 'layer to

use' (where new entities will be created)

 GiD_Layers get

color|opaque|visible|frozen|parent|state|num_entities|num_conditions|id|back|to_use|all_properties

<layer>

To obtain the current value of some property:

num_entities: the total number of geometric or mesh entities that belong to the layer

num_conditions: the total number of conditions applied to the layer

id: the numeric identifier of the layer

GiD v17

Copyright © 2024, GiD, CIMNE 226

back: return 1 if the layer has entities in its 'back' layer (entities in back are not drawn until they are

sent again to front)

to_use: in this case <layer> must not be providen, it is returned the current 'layer to use' (where new

entities will be created)

all_properties: return a list of property value with the properties of the layer

 GiD_Layers list ?<parent>? ?descendants?

To get the list of fullnames of the current layers.

If a parent is specified, then only relative names of child layers will be listed. Root parent could be specified with

an empty string ""

If desdendants is specified return a list of all descendants (childs, childs of childs, ...)

 GiD_Layers window open|close|update

Show or hide the layers window or update its content

 GiD_Layers exists <layer>

Return 1 if layer exists, 0 else

 GiD_Layers is_forbidden_name <layer>

Return 1 if layer name has forbidden syntax

Entities

GiD_EntitiesLayers assign|assign_back_layer|assign_front_layer|get|print|entity_layer

To handle the entities that belong to layers

 GiD_EntitiesLayers assign <layer> ?-also_lower_entities? ?-also_higher_entities? <over> <selection>

To assign the selection of entities of kind over to the layer

<layer> is the full name of the layer

<-also_lower_entities> is an optional flag, to select also all lower entities of the selected ones (e.g. curves

and points of the selected surfaces)

<-also_higher_entities> is an optional flag, to select also all higher entities of the selected ones (e.g.

volumes of the selected surfaces)

<over> could be points, lines, surfaces, volumes, nodes, elements, all_geometry, all_mesh

<selection> is a list of integer entity id's starting from 1.

In case of all_geometry is expected a list with 4 items with the list of ids of points, lines, surfaces and

volumes.

In case of all_mesh is expected a list with 2 items with the list of ids of nodes and elements respectively

GiD_EntitiesLayers assign_back_layer ?-also_lower_entities? ?-also_higher_entities? <over>

<selection>

To send the selection of entities of kind over to the back (hidden part) of its layer

<-also_lower_entities> is an optional flag, to select also all lower entities of the selected ones (e.g. curves

and points of the selected surfaces)

<-also_higher_entities> is an optional flag, to select also all higher entities of the selected ones (e.g.

volumes of the selected surfaces)

<over> could be points, lines, surfaces, volumes, nodes, elements, all_geometry, all_mesh

<selection> is a list of integer entity id's starting from 1.

GiD v17

Copyright © 2024, GiD, CIMNE 227

In case of all_geometry is expected a list with 4 items with the list of ids of points, lines, surfaces and

volumes.

In case of all_mesh is expected a list with 2 items with the list of ids of nodes and elements respectively

GiD_EntitiesLayers assign_front_layer ?-also_lower_entities? ?-also_higher_entities? geometry|mesh

all_entities|layer_entities|<over> <layer>|<selection>

To send the entities of <layer> again to the front (visible part) of its layer

<-also_lower_entities> is an optional flag, to select also all lower entities of the selected ones (e.g. curves

and points of the selected surfaces)

<-also_higher_entities> is an optional flag, to select also all higher entities of the selected ones (e.g.

volumes of the selected surfaces)

geometry|mesh specify which layer entities must be sent to front: geometry or mesh entities

all_entities: will send all entities of the geometry or mesh. In this case <layer> must not be specified

layer_entities <layer>: will send to front only the geometry or mesh entities of this layer.

<over> <selection>: will send the selection of entities of type <over> (points, lines, surfaces, volumes,

nodes or elements)

GiD_EntitiesLayers get <layer> <over> ?-count? ?-element_type <types_allowed>?

To get the list of entities of kind <over> that belong to <layer>.

If <over> is all_geometry then is obtained a list with 4 sublists: point id's, line id's, surface id's and volume

id's

If <over> is all_mesh then is obtained a list with 2 sublists: node id's and element id's

if -count is specified, then only the number of objects is returned instead of its list.

if -element_type <types_allowed> is specified then only the types of elements listed in <types_allowed>

will be taken into account. <types_allowed> must be a list of triangle quadrilateral, etc.

In fact it is returned an 'objarray': a Tcl_Obj object specialized for arrays, implemented as a Tcl package

named 'objarray'. (for more information see scripts\objarray\objarray.pdf)

GiD_EntitiesLayers print <layer> nodes|elements ?-element_type <types_allowed>? ?-

offset_element_num <offset>? ?-factor <factor>? <format> <channel>

To print to the file given by <channel> the nodes or elements of the mesh that belong to <layer> with the

specified <format>.

The returned value is the number of nodes or elements of this layer.

for each node it expects to print node_num x y z, then the <format> must be according to an integer for the

num and 3 double numbers for the node coordinates

if -factor <factor> is provided then the x,y,z coordinates are multiplied by this scale <factor>, that must be a

real number>0 (e.g. to change the scale or the units)

for each element it expects to print the element_id and then element_connectivities, then the <format>

must be according to an integer for the num and element_nnode integers for its node ids.

If -element_type <types_allowed> is specified then only the types of elements listed in <types_allowed>

will be taken into account. <types_allowed> must be a list of triangle, quadrilateral, etc.

If -offset_element_num <offset> is present, then instead the element_num will print an increasing counter,

starting from <offset>. <offset> must be an integer >=-1 (usually 0 to print 1, 2, 3,... but can be -1 to print

0,1,2,...)

Example: to print in a file named $filename the node id and x y z of the nodes belonging to $layer_name

GiD v17

Copyright © 2024, GiD, CIMNE 228

set layer_name [GiD_EntitiesLayers entity_layer surfaces 12]

Example: to print the element connectivities of the elements of type triangle belonging to $layer_name

(expected non quadratic case, with 3 nodes by triangle), and omit print the element id with %.0s

GiD_EntitiesLayers print $layer_name elements -element_type Triangle "%.0s%i

%i %i\n" $fp

GiD_EntitiesLayers entity_layer <over> <id>

To get the layer to which the entity <id> of type <over> belongs

<over> could be points, lines, surfaces, volumes, nodes, elements

<id> is the entity number, starting from 1.

Example: to know the layer of the surface with num 12

Groups

Definition

GiD_Groups create|clone|delete|edit|get|list|window|exists|is_forbidden_name|draw|end_draw

 GiD_Groups create <group>

To create a new group. <group> must be the full name (e.g. if a group B has as parent A then must use as

fullname A//B)

 GiD_Groups clone <source_group> <destination_group>

create a new cloned group, with the same entities that its source group.

<source_group> must be the full name of an existing group to be duplicated.

<destination_group> must be the tail name of a non existing group. The group parent will be the same as the

source. In case of require other parent must be changed after with GiD_Groups edit parent

 GiD_Groups delete <group>

To delete a group

 GiD_Groups edit name|color|opaque|visible|allowed_types|allowed_element_types|parent|state

<group> <value>

To modify group properties:

name: change its name

color: set the color to draw its entities (with format #rrggbbaa)

set fp [open $filename w]

GiD_EntitiesLayers print $layer_name nodes "%i %g %g %g\n" $fp

close $fp

GiD v17

Copyright © 2024, GiD, CIMNE 229

opaque: opaque (1) or transparent (0)

visible: set visibility of its entities. (Visible = 1, Hidden = 0)

allowed_types: set the list type of geometric or mesh entities allowed to be in the group, must be a list

with some of {points lines surfaces volumes nodes elements faces}

allowed_element_types: set the list type of mesh elements allowed to be in the group, must be a list

with some of {linear triangle quadrilateral, }, by default all element types are allowed

parent: to change the parent of a group

state: to change the groups state (normal, disabled or hidden). hidden groups are not listed or visible

in windows.

 GiD_Groups get

color|opaque|visible|allowed_types|allowed_element_types|parent|state|num_entities|num_conditions

To obtain the current value of some property:

num_entities: the total number of geometric or mesh entities that belong to the group

num_conditions: the total number of conditions applied to the group

id: the numeric identifier of the group

all_properties: return a list of property value with the properties of the layer

 GiD_Groups list ?<parent>?

To get the list of fullnames of the current groups.

If a parent is specified, then only relative names of child groups will be listed. Root parent could be specified

with an empty string ""

 GiD_Groups window open|close|update

Show or hide the groups window or update its content

 GiD_Groups exists <group>

Return 1 if group exists, 0 else

 GiD_Groups is_forbidden_name <group>

Return 1 if group name has forbidden syntax

 GiD_Groups draw {<group_1> <group_n>}

Starts drawing the specified groups

 GiD_Groups end_draw

Finish drawing groups.

Entities

GiD_EntitiesGroups assign|unassign|get|entity_groups

To handle the entities that belong to groups

GiD v17

Copyright © 2024, GiD, CIMNE 230

Note: GiD_WriteCalculationFile could be interesting to tranverse an print data based on groups without the extra

cost of GiD_EntitiesGroups serializing potentially big lists of entities.

 GiD_EntitiesGroups assign|unassign|get <group> ?-also_lower_entities? ?-also_its_mesh? <over>

<selection>

To add, remove or know entities of a group

 GiD_EntitiesGroups assign <group> ?-also_lower_entities? ?-also_its_mesh? <over> <selection>

To assign the selection of entities of kind over to the group

<group> is the full name of the group

<-also_lower_entities> is an optional flag, to select also all lower entities of the selected ones (e.g. curves and

points of the selected surfaces)

<-also_its_mesh> is an optional flag, to assign also to the mesh created from the geometrical entities, it this

information is available

<over> could be points, lines, surfaces, volumes, nodes, elements, faces, all_geometry, all_mesh

<selection> is a list of integer entity id's starting from 1.

In case of faces it is a list with 2 items, the first is the list of element id's and the second the list of face id's (the

local number of the face on the element: a number from 1 to nfaces of the element)

In case of all_geometry is expected a list with 4 items with the list of ids of points, lines, surfaces and volumes.

In case of all_mesh is expected a list with 3 items with the list of ids of nodes, elements and faces, and for faces

there are two subitems {element_ids face_ids}

 GiD_EntitiesGroups unassign <group> ?-also_lower_entities? ?-also_its_mesh? ?-element_type

<types_allowed>? <over> ?<selection>?

To unassign the selection of entities of kind over of the group.

If -element_type <types_allowed> is specified then only the types of elements listed in <types_allowed> will be

taken into account. <types_allowed> must be a list of triangle quadrilateral, etc.

If <selection> is missing, then all entities of kind <over> are unassigned of <group>

 GiD_EntitiesGroups unassign all_geometry|all_mesh|all

all_geometry:To unassign all groups of all geometric entities

all_mesh: To unassign all groups of all mesh entities

all: To unassign all groups of all entities

 GiD_EntitiesGroups get <group> <over> ?-count? ?-element_type <types_allowed>? ?-visible?

To get the list of entities of kind <over> that belong to <group>.

If <over> is faces then is obtained a list with 2 sub-lists: element id's and face id's

If <over> is all_geometry then is obtained a list with 4 sub-lists: point id's, line id's, surface id's and volume id's

If <over> is all_mesh then is obtained a list with 3 sub-lists: node id's, element id's, face id's (and face id's is a

list with 2 items: element id's and face id's)

if -count is specified, then only the number of objects is returned instead of its list.

if -element_type <types_allowed> is specified then only the types of elements listed in <types_allowed> will be

taken into account. <types_allowed> must be a list of triangle quadrilateral, etc.

if -visible is specified, then only the entities visible must be taken into account

In fact it is returned an 'objarray': a Tcl_Obj object specialized for arrays, implemented as a Tcl package named

'objarray'. (for more information see scripts\objarray\objarray.pdf)

 GiD_EntitiesGroups entity_groups <over> <id>

GiD v17

Copyright © 2024, GiD, CIMNE 231

To get the list of groups to which the entity <id> of type <over> belongs

<over> could be points, lines, surfaces, volumes, nodes, elements, faces

<id> is the entity number, starting from 1. In case of faces it is a list with two items: {<element_id> <face_id>},

with <face_id> starting from 1

Data (problemtype classic)

GiD-Tcl special commands to manage books, materials, conditions, intervals, general data or local axes:

Books

GiD_Book material|condition create|set|exists

To create or know if a book of materials or conditions exists, or to set its current book.

Books are like a container to visually separe materials or conditions in submenus and different windows

 GiD_Book material|condition create <book>

To create a new book named <book> in the collection of books of materials or conditions

 GiD_Book material|condition set <book> <name>

To set as <book> as current book of a material or condition named <name>

 GiD_Book material|condition exists <book>

To check if the book <book> exists in the collection of books of materials or conditions

CreateData

GiD-Tcl special commands to create and delete materials and conditions:

GiD_CreateData create|delete material|material_base|condition ...

To create or delete materials or conditions:

GiD_CreateData create material <basename> <name> <values>

To create a material with the same question fields as a base material but different values:

 <basename> this only applies to the create material operation, and is the base material from which the

new material is derived;

 <name> is the name of material itself;

 <values> is a list of all field values for the new material.

GiD_CreateData delete material|material_base <name>

To delete a material

GiD_CreateData create material_base <name> {{question_1 ... question_n} ?{value_1 value_n}?}

To create a base material: (define the fields of a new material to be used to derive new materials from it)

 <name> is the name of material;

 <questions> and <values> are lists of all questions and values for the new material. If values are missing

empty values are used.

GiD_CreateData create condition <name> <over_geometry> <over_mesh> {{question_1 ... question_n} ?

GiD v17

Copyright © 2024, GiD, CIMNE 232

set id_material [GiD_CreateData create material Steel Aluminium {3.5 4

0.2}]

GiD_CreateData delete material Aluminium

set id_condition [GiD_CreateData create condition surface_pressure

over_surface over_face {{pressure} {0.0}}]

GiD_CreateData delete condition surface_pressure

GiD_AssignData material Steel Surfaces {2:end}

GiD_AssignData condition Point-Load Nodes {3.5 2.1 8.0} all

GiD_AssignData condition Face-Load face_elements {3.5 2.1 8.0} {15 1 18

1 20 2}

{value_1 value_n}?}

To create a condition:

 <over_geometry> must be over_point|over_line|over_surface|over_volume|over_layer|over_group

 <over_mesh> must be over_node|over_element|over_face

GiD_CreateData delete condition <name>

To delete a condition:

Example:

AssignData

GiD_AssignData material|condition <name> <over> ?<values>? <entities>

To assign materials or conditions over entities:

 <name> is the name of the material or condition. In case of material it is allowed a numeric index (0 for not

assigned material)

 <over> must be: points, lines, surfaces, volumes, layers, groups, nodes, elements, body_elements, or

face_elements (elements is equivalent to body_elements). Layers and groups is valid for conditions defined

over them, but not for materials.

 <values> is only required for conditions. If it is set to "" then the default values are used;

 <entities> a list of entities (it is valid to use ranges as a:b ,can use "all" to select everything, "end" to specify

the last entity, layer:<layername> to select the entities in this layer) ; if <over> is face_elements then you

must specify a list of "entity numface" instead just "entity". (numface starting from 1)

Example:

UnAssignData

GiD_UnAssignData material|condition <name> <over> <entities> ?wherefield <fieldname> <fieldvalue>?

To unassign materials or conditions of some entities:

 <name> is the name of the material or condition; Can use "*" to match all materials

 <over> must be: points, lines, surfaces, volumes, layers, nodes, elements, body_elements, or

face_elements (elements is equivalent to body_elements);

GiD v17

Copyright © 2024, GiD, CIMNE 233

GiD_UnAssignData material * surfaces {end-5:end}

GiD_UnAssignData condition Point-Load nodes layer:Layer0

GiD_UnAssignData condition Face-Load face_elements {15 1 18 1 20 2}

GiD_AccessValueAssignedCondition -field_index set Point_BC points {0

5sec} {2}

It is possible to use all_geometry|all_mesh||all to unassign of all entities of geometry or mesh or both. Then

<entities selection> must not be provided.

 <entities> a list of entities (it is valid to use ranges as a:b ,can use "all" to select everything, "end" to specify

the last entity, layer:<layername> to select the entities in this layer) ; if <over> is face_elements then you

must specify a list of "entitynumface" instead just "entity".

 wherefield <fieldname> <fieldvalue> To unassign this condition only for the entities where the field named

'fieldname' has the value 'fieldvalue'

Example:

AccessValueAssignedCondition

GiD_AccessValueAssignedCondition ?-field_index? set|get <condition> <over>

{<question>|<field_index> ?<value>? ... <question>|<field_index> ?<value>?} <entities>

To get or set field values of conditions applied over entities:

 <condition> is the name of the condition;

 <over> must be: points, lines, surfaces, volumes, layers, groups, nodes, elements, body_elements, or

face_elements (elements is equivalent to body_elements).

 <question> is the field name to be changed

 <field_index> is the field number, starting from 0 (if -field_index was used)

 <value> is the new value to be set

 <entities> a list of entities (it is valid to use ranges as a:b ,can use "all" to select everything, "end" to specify

the last entity, layer:<layername> to select the entities in this layer) ; if <over> is face_elements then you

must specify a list of "entity numface" instead just "entity". (numface starting from 1)

Example:

ModifyData

GiD_ModifyData ?-book? material|condition|intvdata|gendata|localaxes ?<name>? <values>

To change all field values of materials, interval data or general data:

 <name> is the material name or interval number;

 <values> is a list of all the new field values for the material, interval data or general data.

if -book is specified then this value is the new book name, and could be applied only to material or condition

Example:

GiD_ModifyData material Steel {2.1e6 0.3 7800}

GiD_ModifyData intvdata 1 ...

GiD v17

Copyright © 2024, GiD, CIMNE 234

GiD_AccessValue set gendata Solver Direct

set mass [GiD_AccessValue -index get material $material_id mass]

set default_value [GiD_AccessValue get -default gendata $question]

GiD_ModifyData gendata ...

GiD_ModifyData -book material Steel my_new_book

GiD_ModifyData localaxes <condition_name> ?geometry|mesh? <entity_ids...> <entiy_euler_angles...>

To change the 3 euler angles of the local axis of a condition <condition_name> attached to entities of geometry

or mesh.

 <condition_name> is the name of the condition (local axis are associated to a condition with an special

#LA# field)

 <entity_ids...> is a list (objarray) of integers with the ids of the entities (of the type as the condition was

defined over geometry or mesh)

 <entiy_euler_angles...> is a list (objarray) of reals with the consecutive 3 values to set to each entity of the

list.

The amount of angles must 3*amount of ids

AccessValue

GiD_AccessValue ?-index? set|get ?-default? material|condition|intvdata|gendata ?<name>?

<question> ?<attribute>? <value>

To get or set some field values of materials, interval data or general data:

if -index is specified then the material or condition number (starting from 1) will be expected instead of its name

if -default is specified then the get option returns the default value instead of the current value

(the default value is value set in the problemtype file)

 <name> is the material, condition name or interval number (not necessary for gendata);

 <question> is a field name;

 <attribute> is the attribute name to be changed (STATE, HELP, etc.) instead of the field value;

 <value> is the new field or attribute value.

Example:

IntervalData

GiD_IntervalData <mode> ?<number>? ?copyconditions?

To create, delete or set interval data;

 <mode> must be 'create', 'delete' or 'set';

 <number> is the interval number (integer >=1).

Create returns the number of the newly created interval and can optionally use 'copyconditions' to copy to the

new interval the conditions of the current one.

For create mode, if <number> is supplied the new interval is inserted in this location, else is append to end.

For set mode, if <number> is not supplied, the current interval number is returned.

Example:

GiD v17

Copyright © 2024, GiD, CIMNE 235

Units

GiD_Units edit|get magnitude_units|magnitudes|model_unit_length|system ?<value>?

To allow get or modify units and magnitudes.

Note: units doesn't exists without load a problemtype that define them

 GiD_Units get magnitude_units <magnitude>

Returns the list of allowed units for the <magnitude> (of the current unit system)

<magnitude> must be one of the values returned by [GiD_Units get magnitudes]

 GiD_Units get magnitudes

Returns the list of defined magnitudes

 GiD_Units get system

To return the current units system string

e.g.

GiD_Units get system

-> SI

 GiD_Units edit system <value>

To set the current units system

e.g.

GiD_Units edit system imperial

 GiD_Units get model_unit_length

To return the current geometry length unit string.

This unit declare the length unit of the coordinates of the geometry or mesh

e.g.

GiD_Units get model_unit_length

-> m

 GiD_Units edit model_unit_length <value>

To set the current geometry length unit.

<value> must be one of the values returned by [GiD_Units get magnitude_units <length_magnitude>]

Where <length_magnitude> must be the length magnitude name. This name depends on the problemtype units

definition (L, LENGTH, or others)

e.g.

GiD_Units edit model_unit_length mm

set current [GiD_IntervalData set]

GiD_IntervalData set 2

set newnum [GiD_IntervalData create]

set newnum [GiD_IntervalData create copyconditions]

set newnum [GiD_IntervalData create $i_insert copyconditions]

GiD v17

Copyright © 2024, GiD, CIMNE 236

LocalAxes

GiD_LocalAxes <mode> <name> ?<type>? <Cx Cy Cz> <PAxex PAxey PAxez> <PPlanex PPlaney

PPlanez>?

To create, delete or modify local axes:

 <mode>: must be one of "create|delete|edit|exists", which correspond to the operations: create, delete, edit

or exists;

 <name>: is the name of local axes to be created or deleted;

 <type>: must be one of "rectangular|cylindrical|spherical C_XZ_Z|C_XY_X". Currently, GiD only supports

rectangular axes. C_XZ_Z is an optional word to specify one point over the XZ plane and another over the Z

axis (default). C_XY_X is an optional word to specify one point over the XY plane and another over the X

axis;

 <Cx Cy Cz> is a Tcl list with the real coordinates of the local axes origin;

 <PAxex PAxey PAxez> is a Tcl list with the coordinates of a point located over the Z' local axis (where Z' is

positive). The coordinates must be separated by a space. If the z coordinate is missing, it is set to z=0.0;

 <PPlanex PPlaney PPlanez> is a Tcl list with the coordinates of a point located over the Z'X'-half-plane

(where X' is positive).

For the 'exists' operation, if only the <name> field is specified, 1 is returned if this name exists, and 0 if it does

not. If the other values are also specified, <name> is ignored.

The value returned is:

-1 if the global axes match;

-2 if the automatic local axes match;

-3 if the automatic alternative local axes match;

0 if it does not match with any axes;

<n> if the user-defined number <n> (n>0) local axes match.

Example:

this last sample returns -1 (equivalent to global axis)

Note: to get information of a local axis can use the command GiD_Info localaxes

Local axis tools

Special GiD commands related to local axis

 gid_groups_conds::local_axes_window

This Tcl procedure open a window to handle local axis assigned to entities

 correct_local_axes_with_lines nodes|elements <groupList> <groupLinesList>

To use this command must apply to some surfaces local axis automatic.

GiD_LocalAxes create "axes_1" rectangular C_XY_X {0 0 0} {0 1 0} {1 0 0}

GiD_LocalAxes delete axes_1

GiD_LocalAxes exists axes_1

GiD_LocalAxes exists "" rectangular C_XY_X {0 0 0} {0 1 0} {1 0 0}

GiD v17

Copyright © 2024, GiD, CIMNE 237

set num_enhanced [correct_local_axes_with_lines elements [list

my_surfaces_group] [list my_lines_group]]

When generating the mesh each element will have a local axis with z' pointing to the surface normal at the

element center, but the axes x' and y' will be arbitrary set parallels to a direction,

and maybe this automatic x' direction is not appropriated to be used for example to define the fibers direction of

a composite material.

It is possible to select some auxiliary curves to generate an approximated interpolated field of directions,

nodes: to correct the current local axis on the nodes of the mesh

elements : to correct the current local axis on the elements of the surface's mesh

<groupList> a list of group names with the surfaces with applied local axis automatic that want to be enhanced

in its mesh (nodes or elements)

<groupLinesList> a list of group names with the auxiliary curves

e.g.

Assuming a group named my_surfaces_group with some surface with automatic local axis applied, and a group

named my_lines_group with some curves approximating the wanted local x' direction

GiD v17

Copyright © 2024, GiD, CIMNE 238

The first image show a surface and a curve to be used to orientate the x' local axis, the second image show the

automatic local axis, and the third image after call correct_local_axes_with_lines with the x' local axis 'near-

parallel' to the auxiliary curve

Note: it is possible to call automatically this command when a mesh is generated, implementing

GiD_Event_AfterMeshGeneration

Print

File

GiD_File fopen|fclose|fprintf|fflush|list

To allow print data from a Tcl procedure with standard fprintf command, specially to write the calculation file

from Tcl or a mix of .bas template and Tcl procedures

 GiD_File fopen <filename> ?<access>?

Open a file named <filename> for writing access. By default access is "w", but is possible to use "a" to append

to a previous file (and "wb" or "ab" to open the file in binary mode). It returns a long integer <file_id>

representing the channel

 GiD_File fclose <file_id>

GiD v17

Copyright © 2024, GiD, CIMNE 239

Number of points and lines: *tcl(MyMethod *FileId)

proc MyMethod { channel } {

GiD_File fprintf -nonewline $channel {%d %d} [GiD_Info Geometry

NumPoints] [GiD_Info Geometry NumLines]

}

Close a channel

 GiD_File fprintf -nonewline <file_id> <format> ?<arg>? ... ?<arg>?

Print data from a Tcl procedure in a file opened with GiD_File fopen and returns the number of printed

characters.

(a .bas template implicitly open/close a file with this command, and the file_id could be send to a tcl procedure

as a parameter with the *FileId template keyword)

<file_id> must be a valid file descriptor, that could be obtained in a .bas template with the *FileId command (or

with GiD_File fopen)

<format> must be a valid C/C++ format, according with the arguments

return

 GiD_File fflush <file_id>

Force unwritten buffered data to be written to the file

 GiD_File list

It returns a list of currently open file_ids

Example:

.bas file:

.tcl file:

WriteCalculationFile

GiD_WriteCalculationFile

The command called GiD_WriteCalculationFile facilitate the creation of the output calculation file.

See also Writing the input file for calculation

Note: This command is provided to allow efficiency and relative flexibility writing the mesh and tree data related

to groups, traversing the data structures without the cost of create a serialized copy in memory.

It is not compulsory to use this command, it is possible, and sometimes necessary, to use other Tcl commands

to get mesh, groups and other data and reorder the information in order to be written.

Note: To print mesh nodes or elements by layers it exists other specialized command: GiD_EntitiesLayers print

<layer> nodes|elements ?-element_type <types_allowed>? ?-offset_element_num <offset>? ?-factor <factor>?

<format> <channel>

GiD v17

Copyright © 2024, GiD, CIMNE 240

set file_id [GiD_WriteCalculationFile init -mode append {c:/temp/my

output.dat}]

lassign {1.5 2.3} x y

GiD_File fprintf $file_id "x=%15.5f y=%15.5f" $x $y

GiD_WriteCalculationFile end

GiD_WriteCalculationFile puts "hello world"

GiD_WriteCalculationFile

init|end|puts|coordinates|all_connectivities|connectivities|nodes|elements|has_elements

 GiD_WriteCalculationFile init ?-mode append? ?-encoding external|utf-8? <filename>

To open for writing the calculation file.

Before to print any information to the file it must be opened with this command. Next prints of

GiD_WriteCalculationFile will use implicitly this opened channel.

GiD internal strings are utf-8 codified,

-encoding external : (default) strings to print are converted to the current external encoding.

-encoding utf-8: strings are not converted.e

It returns an file identifier that could be used with with 'GiD_File fprintf', but must not be used with Tcl standard

print commands like 'puts' or 'write'

Example:

 GiD_WriteCalculationFile end

To close the calculation file

Example:

 GiD_WriteCalculationFile puts ?-nonewline? <string>

Print the string in the calculation file and a carriage return

-nonewline avoid the carriage return.

Example:

 GiD_WriteCalculationFile coordinates ?-count? ?-return? ?-factor <factor>? <format>

This command must be used to print all nodes of the mesh. It prints <num> <x> <y> <z> for each node.

<format> must be a "C-like" format for an integer and three doubles.

GiD v17

Copyright © 2024, GiD, CIMNE 241

set num_coordinates [GiD_WriteCalculationFile coordinates -count ""] ;

#with -count the format doesn't matter, "" could be used

GiD_WriteCalculationFile puts "num coordinates: $num_coordinates"

set unit_origin [gid_groups_conds::give_mesh_unit]

set unit_destination [gid_groups_conds::give_active_unit L]

set mesh_factor [gid_groups_conds::convert_unit_value L 1.0 m mm]

GiD_WriteCalculationFile coordinates -factor $mesh_factor "%d %g %g %g"

GiD_WriteCalculationFile all_connectivities -elemtype Triangle "id: %d

connectivities: %d %d %d"

Are only printed the values with supplied format, e.g. if the format is "%d %f" only the node number and its x will

be printed.

If a %.0s is specified then the corresponding value is not printed (trick to avoid print some values)

 If -count is specified then only return the number of entities, without print.

 If -return is specified then return the string, without print.

 If -factor <factor> is set then the coordinates will be scaled by the <factor> (that must be a real number,

1.0 by default). It is used aid to write the mesh based on the declared mesh unit and the current

reference length unit.

Example:

 GiD_WriteCalculationFile all_connectivities ?-elemtype <etype>? ?-count? ?-return? ?-

connec_ordering corners_faces|corner_face_corner_face? <format>

This command must be used to print all elements of the mesh. It prints the element number and its

connectivities for each element of type <etype> of the mesh (all types if -elemtype is not set)

<format> must be an integer for the element id and as much integers as connectivities to be printed.

 <etype> can be:

Linear|Triangle|Quadrilateral|Tetrahedra|Hexahedra|Prism|Point|Pyramid|Sphere|Circle

 If -count is specified then only return the number of entities, without print.

 If -return is specified then return the complete string, without print.

 for quadratic elements the order of nodes could be specified with -connec_ordering

corners_faces|corner_face_corner_face

by default the order is corners_faces (first are printed the corners and then the quadratic nodes)

Example:

 GiD_WriteCalculationFile connectivities|nodes|elements|has_elements ?-elemtype <etype>? ?-

localaxes <groupsLADict>? ?-elements_faces all | elements | faces? ?-number_ranges <NRDict>? ?-

count? ?-unique? ?-error_if_repeated? ?-multiple? ?-all_entities? ?-print_faces_conecs? ?-sorted? ?

-do_subst? ?-connec_ordering? ?-return? ?-factor <factor>?<groupsDict>

To get entities information related to groups: connectivities, nodes, elements of the group names specified in

the <groupsDict> dictionary

for connectivities it prints the element number and its connectivities

GiD v17

Copyright © 2024, GiD, CIMNE 242

set format_by_group [dict create $group_a "A: %d - %d %d %d" $group_b

"B: %d - %d %d %d"]

GiD_WriteCalculationFile connectivities -elemtype Triangle

$format_by_group

for nodes it prints the node number and optionally (if the provided format expect it) its x y z real coordinates. If -

factor <factor> is provided the coordinates are multiplied by this real number (used for units)

for elements it prints the element number (for element faces prints element number and face number, element

from 1, face from 0)

 -elemtype <etype> can be:

Linear|Triangle|Quadrilateral|Tetrahedra|Hexahedra|Prism|Point|Pyramid|Sphere|Circle

 -localaxes can be set in order to write local coordinate axes, where <formatLADict> is a dictionary (list

of pairs key-value), with key equal to LA_name and value equal to a format, which could be for instance

{%d[euler_angles matrix/matrixT "%g%g%g%g%g%g%g%g%g"]}. The euler_angles is a function and

matrix or matrixT its argument in order to remark that its rotation matrix or its transposed matrix should

be written. A format equal to "" should be specified at the end of the GiD_WriteCalculationFile function.

The EAmat function permits to have more control about the rotation matrix related to the euler angles

using for instance the format {%d[EAmat 1 1][EAmat 2 1][EAmat 3 1][EAmat 1 2][EAmat 2 2][EAmat 3 2]

[EAmat 1 3][EAmat 2 3][EAmat 3 3]} to write the directions of the local coordinate systems. The three

angles giving the rotation matrix are called Euler angles.

A -do_subst flag should be required in order to replace the previous formulas in the GiD_WriteCalculationFile.

<groupsLADict> is a dictionary (list of pairs key value) of local axes, with key=LA_name and value=format

 -elements_faces can be set to specify any type (all), body elements (elements) or face elements (faces

). Therefore, it considers element connectivities or face elements connectivities.

 -unique can be set to specify that each entity should be written once.

 -multiple can be used in order to consider a list of variables containing a dictionary value (list of pairs

key value). It is known that "dict set dictionary key value" command takes the name of a variable

containing a dictionary value and places an updated dictionary value in that variable, containing a

mapping from the given key to the given value. It should be noted that when multiple keys are present,

this operation creates or updates a chain of nested dictionaries and the GiD_WriteCalculationFile

function requires -multiple flag.

 -all_entities can be set to specify that all entities should be considered.

 -do_subst can be set to replace formulas.

 -number_ranges can be set to print the list of entities, in case of consecutive ids, with a compressed

notation n_start:n_end (meaning n_start,n_start+1,..., n_end) group entities using a groups dictionary.

<NRDict> is a dictionary with key the format associated to a group name in <groupsDict> and value another

format with and extra integer, typically the first format prefixed by "%d:"

 -sorted can be set to apply a string ordering.

 -print_faces_conecs can be set to print face element connectivities. A -elements_faces of face

elements should be specified when a -print_faces_conecs is used.

 -connec_ordering can be set to specify a connectivities ordering as corner-middle edge-corner (

corner_face_corner_face), default is first all corner nodes (corners_faces)

 If -count is specified then only the number of entities is returned, without print.

 If -return is specified then the complete string is returned, without print.

 <groupsDict> is a dictionary (list of pairs key value), with key=group_name and value=format

if key is "" then is considered like a wildcard and match all entities that are not matched by other keys.

Example: to print the id and connectivities of the triangle elements of the groups named $group_a or $group_b

GiD v17

Copyright © 2024, GiD, CIMNE 243

GiD_WriteCalculationFile elements -elemtype Triangle [dict create

$group_name "element id:%d node ids:%d %d %d\n"]

set format_by_group [dict create $group_name "%d of group $group_name"]

GiD_WriteCalculationFile nodes $format_by_group

#or to print also its x y z coordinates:

set format_by_group [dict create $group_name "%d of group $group_name

with coordinates %g %g %g"]

GiD_WriteCalculationFile nodes $format_by_group

#or as a trick to avoid printing the z coordinate could use "%.0s" to

jump this extra argument

set format_by_group [dict create $group_name "%d of group $group_name

with coordinates %g %g %.0s"]

GiD_WriteCalculationFile nodes $format_by_group

GiD_WriteCalculationFile elements -elemtype Tetrahedra -elements_faces

faces -print_faces_conecs [dict create $group_name "%.0snode ids: %d %d

%d\n"]

GiD_WriteCalculationFile elements -elemtype Tetrahedra -elements_faces

faces [dict create $group_name "element id:%d face index:%d\n"]

GiD_WriteCalculationFile nodes -return -localaxes [dict create

$group_name "%d Euler1=%.15g Euler2=%.15g Euler3=%.15g\n"] {}

Example: to print the node id of the nodes belonging to $group_name and a text with the group name

Example: to print the element id of the triangle elements belonging to $group_name

Example: to print the faces of tetrahedra belonging to $group_name, printing its 3 face node ids (the %.0s is to

not print the tetrahedra id)

Example: to print the faces of tetrahedra belonging to $group_name, printing the tetrahedra id and the local face

index (0 to 4)

Example: to print node id and the local axes (as 3 euler angles) of the nodes belonging to $group_name that

have local axis assigned.

Results

GiD v17

Copyright © 2024, GiD, CIMNE 244

GiD_Result create|delete|exists|get|get_nodes|gauss_point|result_ranges_table ?-array? <data>

To create, delete or get postprocess results:

 GiD_Result create ?-array? {Result header} ?{Unit <unit_name>}? ?{componentNames name1 ...}?

{entity_id scalar|vector|matrix_values} {...} {...} : these creation parameters are the same as for the

postprocess results format (see Result of Results format: ModelName.post.res) where each line is passed

as Tcl list argument of this command;

Optionally the names of the result's components could be specified, with the componentNames item, and the

unit label of the result with the Unit item

if the -array flag is used (recommended for efficiency), then the syntax of the data changes. Instead to multiple

items {id1 vx1 vy1 ...} ... {idn vxn vyn} a single item with sublists is required, id1 ... idn} {{vx1...vxn}

{vy1...vyn}, where idi are the integers of the node or element where the result are defined, and vi are the

real values. The amount of values depends on the type of result: 1 for Scalar, 2 for ComplexScalar, 3 for Vector

(4 if signed modulus is provided), 6 for Matrix.

In fact with -array it is returned an 'objarray': a Tcl_Obj object specialized for arrays, implemented as a Tcl

package named 'objarray'. (for more information see scripts\objarray\objarray.pdf)

Examples:

GiD_Result create -array {Result "MyVecNodal" "Load analysis" 10 Vector OnNodes} {ComponentNames "Vx"

"Vy" "Vz" "|velocity|"} 1 3} {{2.0e-1 -3.5e-1} {2.0e-1 4.5e-1} {0.4 -2.1}

GiD_Result create {Result "Res Nodal 1" "Load analysis" 1.0 Scalar OnNodes} {1 2} {2 2} {113 2} {3 5} {112 4}

GiD_Result create {Result "Res Nodal 2" "Load analysis" 4 Vector OnNodes} {ComponentNames "x comp" "y

comp" "z comp" "modulus"} {1 0.3 0.5 0.1 0.591} {2 2.5 0.8 -0.3 2.641}

GiD_Result create -array {Result "Res Nodal 2" "Load analysis" 4 Vector OnNodes} {ComponentNames "x

comp" "y comp" "z comp" "modulus"} 1 2} {{0.3 2.5} {0.5 0.8} {0.1 -0.3} {0.591 2.641}

 GiD_Result delete {Result_name result_analysis step_value} : deletes one result;

Examples:

GiD_Result delete {"Res Nodal 1" "Load analysis" 4}

 GiD_Result exists {Result_name result_analysis step_value} : return 1 if the result exists.

 GiD_Result get ?-max|-min|-componentmax|-componentmin|-info? ?-sets <set_names_list>? ?-

selection <sorted_ids>? ?-array? ?-ignore_no_result? {Result_name result_analysis step_value} :

retrieves the results value list of the specified result.

-array: optional flag. The values are returned more efficiently grouping the information in arrays, else values are

grouped as a list with one item by entity

-ignore_no_result : optional flag. The values unset (with special value -3.40282346638528860e+38 that mean

no_result) will be ignored

-sets <set_names_list>: only the results of nodes/elements (depending on the result) of the sets belonging to

<set_names_list> are returned

-selection <sorted_ids>: only the results of nodes/elements (depending on the result) with id belonging to

<sorted_ids> are returned

<sorted_ids> must be an intarray (list of integer ids) of increasing ids of nodes/elements to be returned.

if one of the -max, -min, -componentmax, -componentmin, or -info flags was specified instead of the full

results value only the minimum/maximum value of the result, every minimum/maximum of the components of

the result, or the header information of the result is retrieved, respectively;

Eamples: (case of a scalar result defined on triangles with 3 gauss points)

GiD_Result get -selection {169 170} -array [list "Test Gauss" "LOAD ANALYSIS" 10]

-> {Result "Test Gauss" "LOAD ANALYSIS" 10 Scalar OnGaussPoints "Triangles"} {ComponentNames "Test

GiD v17

Copyright © 2024, GiD, CIMNE 245

Gauss"} 169 170} {{26.25 27.299999237060547 28.350000381469727 26.399999618530273

27.450000762939453 28.5}

GiD_Result get -selection {169 170} [list "Test Gauss" "LOAD ANALYSIS" 10]

-> {Result "Test Gauss" "LOAD ANALYSIS" 10 Scalar OnGaussPoints "Triangles"} {ComponentNames "Test

Gauss"} {169 26.25 27.299999237060547 28.350000381469727} {170 26.399999618530273

27.450000762939453 28.5}

 GiD_Result get_nodes: returns a list of nodes and their coordinates.

 GiD_Result gauss_point create|get|names|delete <name> <elemtype> <npoint> ?-nodes_included?

<coordinates> ?<mesh_name>?

 create <name> <elemtype> <npoint> ?-nodes_included? <coordinates> ?<mesh_name>?

Define a new kind of gauss point where element results could be related.

<name> is the gauss point name. Internal Gauss points are implicitly defined, and its key names (GP_LINE_1,

GP_TRIANGLE_1,...) are reserved words and can't be used to create new gauss points or be deleted. (see

Gauss Points)

<elemtype> must be one of "point | line | triangle | quadrilateral | tetrahedra | hexahedra | prism | pyramid |

sphere | circle". (see Mesh format: ModelName.post.msh)

<npoint> number of gauss points of the element

-nodes_included :optional word, only for line elements, to specify that start and end points are considered (by

default are not included)

<coordinates> : vector with the local coordinates to place the gauss points: 2 coordinates by node for surface

elements, 3 coordinates for volume elements. For line elements now is not possible to specify its coordinates,

the n points will be equispaced.

If coordinates are "" then internal coordinates are assumed.

<mesh_name>: optional mesh name where this definition is applied, by default it is applied to all meshes

 GiD_Result gauss_point get <name>

Return the information of this gauss point

 GiD_Result gauss_point names

Return a list with the names of all gauss points defined

 GiD_Result gauss_point delete <name>

Examples:

GiD_Result gauss_point create GPT1 Quadrilateral 1 {0.5 0.5}

GiD_Result create {Result "Res Gauss 1" "Load analysis" 1.0 Scalar OnGaussPoints GPT1} {165 2} {2} {3} {164

5} {4} {3}

 GiD_Result result_ranges_table create|get|names|delete <name> {<min1> <max1> <label1> ...

<minn> <maxn> <labeln> }

 create <name> {<label1> <min1> <max1> ... <labeln> <minn> <maxn>}

Define a new kind of result ranges table to map ranges of result values to labels.

<name> is the result ranges table name.

<mini> <maxi> <labeli>: is the label to show for result values from min to max

 GiD_Result result_ranges_table get <name>

Return the information of this result ranges table

 GiD_Result result_ranges_table names

Return a list with the names of all result ranges tables defined

GiD v17

Copyright © 2024, GiD, CIMNE 246

set count_elements_set [GiD_EntitiesSets get Layer0 elements -count]

set nodes_ids_one_set [GiD_EntitiesSets get Layer0 nodes]

set element_21_set [GiD_EntitiesSets entity_sets elements 21]

set node_8_sets [GiD_EntitiesSets entity_sets nodes 8]

 GiD_Result result_ranges_table delete <name>

-array flag can be specified, for create and get subcommands, to use list of vectors to handle the information in

a more efficient way

Sets

Definition

GiD_Sets get

To handle the definition of postprocess sets (similar to preprocess layers)

 GiD_Sets get color|visible|type|num_entities|id <set_name>

To obtain the current value of some property:

type: set type. could be 0==unknown, 1==mesh, 2==set, 3==cut

num_entities: the total number of mesh elements that belong to the set

id: the numeric identifier of the set

Entities

GiD_EntitiesSets get|entity_sets

To handle the entities that belong to postprocess sets (similar to preprocess layers)

 GiD_EntitiesSets get|entity_sets

To know the entities of a set or to know the sets of an entity

 GiD_EntitiesSets get <set_name> nodes|elements|all_mesh ?-count?

To get the list of entities of kind <over> that belong to <set_name>

If <over> is all_mesh then is obtained a list with 2 sublists: node id's, element id's

if -count is speficified, then only the number of objects is returned instead of its list.

In fact it is returned an 'objarray': a Tcl_Obj object specialized for arrays, implemented as a Tcl package named

'objarray'. (for more information see scripts\objarray\objarray.pdf)

Example:

 GiD_EntitiesSets entity_sets nodes|elements <id>

To get the set that contain the element <id> or the list of set that contain a node <id> (the sets that contain

elements with the node as vertex)

Example:

GiD v17

Copyright © 2024, GiD, CIMNE 247

Graph

GiD_Graph clear|create|delete|edit|exists|get|hide|list|show

To create, delete or get postprocess graphs:

All commands accept an optional parameter <graphset_name>, else the current graphset is assumed.

 clear?<graphset_name>?: delete all graphs in GiD;

 create <graph_name> <label_x> <label_y> <x_values> <y_values> <x_unit> <y_unit> ?

<graphset_name>?: creates the graph "graph_name" with the provided information, causing an error if the

graph already exists: for instance the graph of the picture was created with

GiD_Graph create "My graph" "x values" "y values" {0 1 2 3} {0.5 2.1 -4.5 8.8} "" ""

 delete <graph_name>?<graphset_name>?: deletes the graph "graph_name" causing an error if does not

exists;

 edit <graph_name> <label_x> <label_y> <x_values> <y_values> <x_unit> <y_unit> ?

<graphset_name>?: modify a the graph with the new values, but without lost other settings like line color,

etc.

 exists <graph_name>?<graphset_name>?: return 1 the graph "graph_name" exists.

 get <graph_name> ?<graphset_name>?: gets a list with the values of the graph with name "graph_name",

the values are the same used to create a graph: <label_x> <label_y> <x_values> <y_values>

 get_name <num> ?<graphset_name>? : get the name of the graph with global identifier <num>. If

<graphset_name> is specified then the graph is only find in this graphset instead of all graphsets.

 hide?<graphset_name>?: hides the graphs and switches back to mesh view.

 list ?<graphset_name>?: gets a list of the existent graphs, an empty list if there is no graph.

 selection get|swap| set <value> <graph_name>: set or get the flag of selection of the graph. <value> is

must be 0 or 1 and is only needed in case of set. swap change the current selection state to the opposite

one. Selected graphs are showed in red color.

 show?<graphset_name>?: switches the graphic view and shows the graphs.

GraphSet

GiD_GraphSet create|current|delete|edit|exists|list

To create, delete or get postprocess graphs sets:

A graphset is a container of graphs sharing the same x, y axes

 create ?<graphset_name>?: creates a new graph set. If the name is not provided an automatic unused

name is assigned. The name of the graph set is returned.

GiD v17

Copyright © 2024, GiD, CIMNE 248

glBegin(GL_LINES);

glVertex(x1,y1,z1);

glVertex(x2,y2,z2);

glEnd();

GiD_OpenGL draw -begin lines

GiD_OpenGL draw -vertex [list $x1 $y1 $z1]

GiD_OpenGL draw -vertex [list $x2 $y2 $z2]

GiD_OpenGL draw -end

 current ?<graphset_name>?: get or set the current graph set. There is always a current graph set.

 delete <graphset_name>: deletes the graphset "graphset_name".

 edit <graphset_name> name|legend_location|title_visible <new_value> : modify the property of the

graph set.

name: is the graphset identifier name

legend_location: 0 - to not show the graph legend

1 - to show the legend on the top-right (default)

2 - to show the legend on the top in a single line, like a title

title_visible: 0 or 1, to print or not in the legend also the graphset name

 exists <graphset_name>: return 1 the graph set "graphset_name" exists;

 list : gets a list of the existent graph sets;

OpenGL

GiD_OpenGL

register|unregister|registercondition|unregistercondition|draw|drawtext|project|unproject|get|doscrzoffse

This command is a Tcl wrapper of some OpenGL functions. It allows to use OpenGL commands directly from

GiD-Tcl.

For example, for C/C++ is used:

For GiD-Tcl must use:

The standard syntax must be changed according to these rules: - OpenGL constants: "GL" prefix and

underscore character '_' must be removed; the command must be written in lowercase.

Example:

GL_COLOR_MATERIAL -> colormaterial

OpenGL functions: "GL" prefix must be removed and the command written in lowercase. Pass parameters as

list, without using parentheses ()

Example:

glBegin(GL_LINES) -> glbegin lines

The subcommand "GiD_OpenGL draw" provides access to standard OpenGL commands, but other

"GiD_OpenGL" special GiD subcommands also exists:

 register <tclfunc> Register a Tcl procedure to be invoked automatically when redrawing the scene. It

returns a handle to unregister.

GiD v17

Copyright © 2024, GiD, CIMNE 249

proc MyRedrawProcedure { } { ...body... }

set id [GiD_OpenGL register MyRedrawProcedure]

GiD_OpenGL unregister $id

proc xxx { condition use entity_id values } {

...

return 1

}

Example:

unregister <handle> Unregister a procedure previously registered with register.

Example:

 registercondition <tclfunc> <condition> Register a Tcl procedure to be invoked automatically when

redrawing the specified condition.

The tcl funcion must have this prototype:

The supplied parameters are:

condition :the condition name, defined in the .cnd file of the problemtype

use: GEOMETRYUSE, MESHUSE or POSTUSE

entity_id: the integer number that identity the entity where the condition is applied. The kind of entity is known

because it is declared in the

definition of the condition in the .cnd, depending if the current state is geometry or mesh

values: a list of the field's values applied to this entity. The amount of values must match the amount of fields of

the condition definition.

The return value of this procedure is important:

return 0: then the standard representation of the condition is also invoked after the procedure

return 1: the standard representation of the condition is avoided.

 unregistercondition <condition> Unregister a procedure previously registered with registercondition.

 draw <-cmd args -cmd args> This is the most important subcommand, it calls standard OpenGL

commands. See the list of supported OpenGL functions.

 drawtext <text> ?–check_non_latin? Draw a text more easily than using standard OpenGL commands

(draw in the current 2D location, see rasterpos OpenGL command).

If -check_non_latin flag is provided, then the text is checked to detect non-latin characters, like a Japanese

string, to be drawn properly (otherwise it is considered as a latin string). The flag must be provided only if <text>

GiD v17

Copyright © 2024, GiD, CIMNE 250

GiD_OpenGL draw -rasterpos [list $x $y $z]

GiD_OpenGL drawtext "hello world"

GiD_OpenGL drawentity -mode filled surface {1 5 6}

GiD_OpenGL drawentity -mode filled element {{1 1} {5 1} {6 3}}

could potentially be non-latin, like translated strings. In case of numbers for example it is unneeded (more

efficient without the extra check)

Example:

 drawentity ?-mode normal|filled? point|line|surface|volume|node|element|dimension <id list> To draw

an internal GiD preprocess entity.

Example:

For elements it is possible to draw only a face, specifying items of element_id and face_id, with face_id a

number from 1 to the number of faces of the element.

Example:

 project <x y z> Given three world coordinates, this returns the corresponding three window coordinates.

 unproject <x y z> Given three window coordinates, this returns the corresponding three world coordinates.

 get modelviewmatrix|projectionmatrix|viewport

return a list of values:

modelviewmatrix: 16 doubles

projectionmatrix: 16 doubles

viewport: 4 integers

 doscrzoffset <boolean> Special trick to avoid the lines on surfaces hidden by the surfaces.

 pgffont pushfont|popfont|print|dimensions|foreground|background

Command for PG fonts

 pgffont pushfont <font_type>

Push sets the current OpenGL font and add to stack.

font types are categories of GiD, valid values: defaultfont | axisfont | legendfont | labelfont | graphfont |

asianfont | tkdrawoglfont| pmfont

 pgffont popfont

GiD v17

Copyright © 2024, GiD, CIMNE 251

proc GetApproximateFactorPixelToWorld { } {

lassign [GiD_Project view clip_planes_x] left_ortho right_ortho

lassign [GidUtils::GetMainDrawAreaSize] w h

set factor [expr double($right_ortho-$left_ortho)/$w]

return $factor

}

GiD_OpenGL pgffont push labelfont

GiD_OpenGL drawtext "hello world"

GiD_OpenGL pgffont pop

accum alphafunc begin bindtexture blendfunc call calllist clear

clearaccum clearcolor cleardepth clearstencil clipplane color colormask

colormaterial copypixels cullface deletelists deletetextures depthfunc

depthmask dfactorBlendTable disable drawbuffer drawpixels edgeflag

enable end endlist evalcoord1 evalcoord2 evalmesh1 evalmesh2 finish

flush fog frontface frustum genlists gentextures getstring hint

hintModeTable initnames light lightmodel linestipple linewidth

loadidentity loadmatrix loadname lookat map1 map2 mapgrid1 mapgrid2

material matrixmode modeColorMatTable multmatrix newlist newListTable

normal opStencilTable opStencilTable ortho perspective pickmatrix

pixeltransfer pixelzoom pointsize polygonmode popattrib popmatrix

popname pushattrib pushmatrix pushname rasterpos readbuffer readpixels

rect rendermode rotate scale scissor selectbuffer shademodel

stencilfunc stencilmask stencilop texcoord texenv texgen teximage1d

teximage2d texparameter translate vertex viewport

Restores the previous font and remove from stack. Commands push/pop must be called always paired

pgffont print <text>

To draw a <text> in the current 3D location (set by GiD_OpenGL draw -rasterpos [list $x $y $z]). It is

similar to GiD_OpenGL drawtext

pgffont dimensions <text>

Return the width of <text> and <height> of current font. Sizes in pixels, but result are float, not int as could

be expected.

To convert to 3D sizes must be multiplied by a factor, an approximate value of this factor could be

calculated like this:

 pgffont foreground <red> <green> <blue> <alpha>

 pgffont background <red> <green> <blue> <alpha>

Example:

List of supported OpenGL functions:

GiD v17

Copyright © 2024, GiD, CIMNE 252

getselection

List of special non OpenGL standard functions:

List of supported OpenGL constants:

accum accumbuffer accumbufferbit add alphatest always allattrib

allattribbits ambient ambientanddiffuse autonormal aux0 aux1 aux2 aux3

back backleft backright blend bluebias bluescale ccw clamp clipplane0

clipplane1 clipplane2 clipplane3 clipplane4 clipplane5 colorbuffer

colorbufferbit colorindex colormaterial compile compileandexecute

constantattenuation cullface current currentbit cw decal decr

depthbuffer depthbufferbit depthtest diffuse dither dstalpha dstcolor

enable enablebit emission equal eval evalbit exp exp2 extensions

eyelinear eyeplane feedback fill flat fog fogbit fogcolor fogdensity

fogend fogmode fogstart front frontandback frontleft frontright gequal

greater greenbias greenscale hint hintbit incr invert keep left lequal

less light0 light1 light2 light3 light4 light5 light6 light7 lighting

lightingbit lightmodelambient lightmodellocalviewer lightmodeltwoside

line linebit linear linearattenuation lineloop lines linesmooth

linestipple linestrip list listbit load map1color4 map1normal

map1texturecoord1 map1texturecoord2 map1texturecoord3 map1texturecoord4

map1vertex3 map1vertex4 map2color4 map2normal map2texturecoord1

map2texturecoord2 map2texturecoord3 map2texturecoord4 map2vertex3

map2vertex4 modelview modulate mult nearest never none normalize

notequal objectlinear objectplane one oneminusdstalpha oneminusdstcolor

oneminussrcalpha oneminussrccolor packalignment packlsbfirst

packrowlength packskippixels packskiprows packswapbytes pixelmode

pixelmodebit point pointbit points polygon polygonbit polygonoffsetfill

polygonstipple polygonstipplebit position projection q

quadraticattenuation quads quadstrip r redbias redscale render renderer

repeat replace return right s scissor scissorbit select shininess

smooth specular spheremap spotcutoff spotdirecion spotexponent srcalpha

srcalphasaturate srccolor stenciltest stencilbuffer stencilbufferbit t

texture texture1d texture2d texturebit texturebordercolor textureenv

textureenvcolor textureenvmode texturegenmode texturegens texturegent

texturemagfilter textureminfilter texturewraps texturewrapt transform

transformbit triangles trianglefan trianglestrip unpackalignment

unpacklsbfirst unpackrowlength unpackskippixels unpackskiprows

unpackswapbytes vendor version viewport viewportbit zero

You can find more information about standard OpenGL functions in a guide to OpenGL.

GiD v17

Copyright © 2024, GiD, CIMNE 253

Raster

GiD_Raster create|interpolate|subsample|fillnodatavalue

To create from the mesh a raster (2D grid) with a value that represents the z, and use a raster to efficiently

interpolate values to other points or all points of other raster.

A raster is defined with a Tcl list of the following data:

<ncols> <nrows> <xllcenter> <yllcenter> <xcellsize> <ycellsize> <nodata_value> <values>

ncols, nrows are the number of columns and rows of values (representing values on center of cells)

xllcenter,yllcenter are the x,y coordinates of the lower-left corner

xcellsize, ycellsize are the x,y sizes of the cells, usually the same value (compulsory to be exported as ArcInfo

grid ASCII)

<nodata_value> is the special value to represent that the data doesn't exists (usually -9999.0 for ArcInfo grid

ASCII)

<values> is an objarray of (ncols x nrows) doubles with the scalar value to be represented, usually the z of the x,

y node.

GiD_Raster create {nodes <xyz_nodes>} ?{<cellsize>}{<ncols> <nrows>}|{<ncols> <nrows> <xllcenter>

<yllcenter> <xcellsize> <ycellsize> <nodata_value>}?

To create a raster from a cloud of 3D nodes

<xyz> must be an objarray of doubles with "x1 y1 z1 ... xn yn zn" values of a cloud of coordinates.

z data will be extrapolated to grid with and averaged value of the near nodes

GiD_Raster create {nodes <xyz_nodes>}

The raster will be created with automatic number of rows, columns and limits

GiD_Raster create {nodes <xyz_nodes>} {<cellsize>}

The raster will be created with the specified cell size, equal for x and y, and automatic number of columns, rows,

and limits

GiD_Raster create {nodes <xyz_nodes>} {<ncols> <nrows>}

The raster will be created with the specified number of columns and rows, and automatic limits

GiD_Raster create {nodes <xyz_nodes>} {<ncols> <nrows> <xllcenter> <yllcenter> <xcellsize>

<ycellsize><nodata_value>}

The raster will be created with the specified number of columns and rows, lower-left center, cell sizes and no

data value.

GiD_Raster create {triangles <xyz_nodes> <elements>} ?{<cellsize>}{ncols nrows}|{ncols nrows

<xllcenter> <yllcenter> <xcellsize> <ycellsize> <nodata_value>}?

To create a raster from a irregular mesh of 3D triangles

<xyz> must be an objarray of doubles with "x1 y1 z1 ... xn yn zn" values of a the node's coordinates.

<elements> must be an objarray of integers with the index (starting by 1) or the 3 nodes of each triangle. "t1_1

t1_2 t1_3 .. tn_1 tn_2 tn_3"

z data will be extrapolated to grid finding the triangle that contain the coordinate in 2D projection, or a near node.

GiD_Raster create {triangles <xyz_nodes> <elements>}

The raster will be created with automatic number of rows, columns and limits

GiD_Raster create {triangles <xyz_nodes> <elements>} {<cellsize>}

The raster will be created with the specified cell size, equal for x and y, and automatic number of columns, rows,

and limits

GiD_Raster create {triangles <xyz_nodes> <elements>} {<ncols> <nrows>}

The raster will be created with the specified number of columns and rows, and automatic limits

GiD v17

Copyright © 2024, GiD, CIMNE 254

GiD_Raster create {triangles <xyz_nodes> <elements>} {<ncols> <nrows> <xllcenter> <yllcenter> <xcellsize>

<ycellsize> <nodata_value>}

The raster will be created with the specified number of columns and rows, lower-left center, cell sizes and no

data value.

GiD_Raster interpolate ?-closest? <raster_interpolation> {nodes <xy_nodes>}|{raster

<raster_to_interpolate_without_data>}

To use <raster_interpolation> to calculate interpolated values of a collection of 2D nodes or all grid nodes of

another raster

It returns and obj_array of doubles with the interpolated value for each node

<xy_nodes> list of x y coordinates "x1 y1 ... xn yn" of the points to interpolate the value

<raster_to_interpolate_without_data> another raster (its values could be a empty objarray)

If -closest flag is set, then instead interpolate it get the value of the closest grid node (interesting to map non-

continuous integer values)

GiD_Raster subsample <raster> <increment_row> ?<increment_col>?

It returns a new raster subsampling the input raster jumping columns and row by increment_row and

increment_col

increment_row must be an integer>0 and <num_rows of the input raster

If increment_col is omitted it is assumed equal to increment_row

GiD_Raster fillnodatavalue<raster>

To fill the missing values (with nodata special value) interpolating them from the existing values. The raster itself

is modified.

Some auxiliary Tcl procedures:

GIS::GetRasterFromTriangles { selected_element_ids cellsize far_points_set_nodata

far_points_distance }

It returns a raster from the selected mesh of triangles.selected_element_ids is expected sorted increasing.

If cellsize is 0.0an automatic value is used

far_points_set_nodata 0 or 1

GIS::GetRasterFromNodes { selected_node_ids cellsize far_points_set_nodata far_points_distance }

It returns a raster from the selected mesh nodes. selected_node_ids is expected sorted increasing.

If cellsize is 0.0 an automatic value is used

far_points_set_nodata 0 or 1

if 0 all grid points will have interpolated value, 1 far grid points will be set with special nodata (usually -9999)

value

far_points_distance is only used if far_points_set_nodata is 1, and must be a distance>=0.0 (if 0.0 will use an

automatic distance value)

GIS::ImportRaster_Geometry { raster show_advance_bar {value_smoothed_to_nodes 1} }

It creates geometrical surfaces (and its lines and points) from the raster

values are considered on elements (the value on the cell center), and the mesh created will connect these

centers.

GiD v17

Copyright © 2024, GiD, CIMNE 255

GiD_Set CreateAlwaysNewPoint

GiD_Set CreateAlwaysNewPoint 1

GiD_Set -default CreateAlwaysNewPoint

GiD_Set -meshing_parameters_model SurfaceMesher

but with value_smoothed_to_nodes==1 they are calculated on the nodes, averaging the value of the cells to be

a continuous field.

GIS::CreateSurfaceParallelLines { raster {layer ""} }

It creates a single NURBS surface interpolating a collection of near-parallel curves (that interpolate the points of

each row of the raster).

<layer> is the layer where the new surface will be assigned (the current layer to use if defaulted to "")

GIS::ImportRaster_Mesh { raster show_advance_bar {value_smoothed_to_nodes 1} {pre_post "pre"}}

It creates mesh quadrilaterals (and its nodes) from the raster. p

re_post can be "post" to create mesh of postprocess.

GIS::SaveRaster_ArcInfoASCII { raster filename }

It saves the raster in the file named filename with ArcInfo grid ASCII format

GDAL::ReadRaster { filename show_advance_bar }

It return a raster with from the file named filename.

The format could be some raster geospatial data format allowed by the GDAL (Geospatial Data Abstraction

Library).

Some of them are: ArcInfo, geotiff, png, jpg, and much more.

Other

GiD_Set ?-meshing_parameters_model? ?-default|-array_names? <varname> ?<value>?

This command is used to set or get GiD variables. GiD variables can be found through the Right buttons menu

under the option Utilities -> Variables:

 <varname> is the name of the variable;

 <value> if this is omitted, the current variable value is returned (analogous with 'GiD_Info variables

<varname>').

 -default return the default value of the variable (<value> its not accepted)

 -array_names return a list with the sub names of the array, or an empty list if is not an array

 -meshing_parameters_model to use the copy of the variable used in meshing the current model instead of

the general preference variable

Example:

GiD_SetModelName <name>

To change the current model name.

If name is not specified then the current model name is returned.

GiD_SetProblemtypeName <name>

To change the current problemtype name.

If name is not specified then the current problemtype name is returned.

GiD_ModifiedFileFlag set|get ?<value>?

GiD v17

Copyright © 2024, GiD, CIMNE 256

GiD_ModifiedFileFlag set 1

GiD_ModifiedFileFlag get

There is a GiD internal flag to indicate that the model has changed, and must be saved before exit.

With this command it is possible to set or get this flag value:

 <value> is only required for set: must be 0 (false), or 1 (true).

Note: This command set all flags. Can set flags of individual datasets with the command GiD_Project set

changes_dataset <dataset> ?<0|1>?

Example:

GiD_MustRemeshFlag set|get ?<value>?

There is a GiD internal flag to indicate that the geometry, conditions, etc. have changed, and that the mesh

must be re-generated before calculations are performed.

With this command it is possible to set or get this flag value:

 <value> is only required for set: must be 0 (false), or 1 (true).

Example:

GiD_Redraw

To force a redraw

GiD_BackgroundImage get|set show|filename|location <values>

This command allow to get and set the background image properties

Valid set values are:

 show: 1 or 0

 filename:

the full filename of some valid GiD image format to be used as background image

or "", to release the current image

 location:

'fill' to fill the whole screen,

or a list (objarray) with six floating values for a real size image, to set the origin and x',y' local axes: ox oy ix iy jx

jy

They are 3 points (in 2D space, z=0.0) that represent:

o=origin lower-left point

i=end point of the local x' axis

j=end point of the local y' axis (the size ratio of the image could change)

Note: 'GiD_BackgroundImage set location' must be called after 'GiD_BackgroundImage set filename'

GiD_RegisterExtensionProc <.extension> PRE|POST|PREPOST <procedure>

To register a Tcl procedure to be automatically called when dropping a file with this extension

GiD_MustRemeshFlag set 1

GiD_MustRemeshFlag get

GiD v17

Copyright © 2024, GiD, CIMNE 257

label .l -image [image create photo -data [GiD_Thumbnail get]]

lassign [GiD_Thumbnail get_pixels png] w h pixels

set my_image [image create photo -width $w -height $h -data $pixels]

label .l -image $my_image

GiD_RegisterExtensionProc ".h5" PRE Amelet::ReadPre

GiD_RegisterPluginAddedMenuProc Amelet::AddToMenu

Example:

GiD_RegisterPluginAddedMenuProc <procedure>

To register a Tcl procedure to be automatically called when re-creating all menus (e.g. when doing files new)

this procedure is responsible to add its own options to default menu.

Example:

GiD_Thumbnail get | get_pixels | get_vectorial | get_statistics_mean

Returns the image data of an downscaled view of the current graphical window.

 get ?-width <req_width> -height <req_height>? ?-components <RGB | BGR | RGBA | BGRA | GREY>?

The image is a downscaled from the current size to req_width x req_height , req_width and req_height must

be > 0. The parameters width and height are optional and by default the view is scaled to 192x144. The

components parameter is also optional and by default is RGB. To get a picture with transparent background,

use '-components RGBA' or '-components BGRA'. The result of this command is png data, which can be directly

used by the Tk image command, like this:

Example:

 get_pixels ?-quality <quality>? ?-components <RGB | BGR | RGBA | BGRA | GREY>? ?-format <png |

jpeg | img_raw | raw?

It returns a list {width height data} of the current image, data is the raw binary pixel values of the image.

The flag -components allows to specify the kind and order of the data for Red, Green, Blue and alpha

component planes, being Alpha the transparency factor.

The flag -format specifies the format of the image data, raw is raw binary pixel values of the image, img_raw it

prefixes a small header to the raw image byte data as defined here https://manpages.ubuntu.com/manpages

/focal/man3/img-raw.3tk.html .

With the flag -quality an integer value from 0 to 100 is used in the lossy compression format JPEG. Using 'jpeg'

or 'jpg' only get the RGB pixels, i.e. it does not have alpha planes.

Example:

get_vectorial STL|VRML|OBJ

https://manpages.ubuntu.com/manpages/focal/man3/img-raw.3tk.html
https://manpages.ubuntu.com/manpages/focal/man3/img-raw.3tk.html

GiD v17

Copyright © 2024, GiD, CIMNE 258

writing STL output

set fo [open file.stl wb]

puts $fo [GiD_Thumbnail get_vectorial stl]

close $fo

writing OBJ output

set obj_data [GiD_Thumbnail get_vectorial OBJ]

lassign $obj_data obj_objects obj_mtl obj_tex

set fo [open file.obj w]

puts $fo $obj_objects

close $fo

if { [llength $obj_mtl] > 0} {

inside $obj_objects there is the refence 'usemtl ObjInMemory.mtl'

set fo [open ObjInMemory.mtl w]

puts $fo $obj_mtl

close $fo

}

if { [llength $obj_tex] > 0} {

inside $obj_mtl there is the refence 'map_Kd ObjInMemory.png'

set fo [open ObjInMemory.png wb]

puts $fo $obj_tex

close $fo

}

GiD_Thumbnail get_statistics_mean

It returns the current view in binary STL or ascii VRML format. As STL only accepts triangles, lines are

formatted as collapsed triangles and polygons are triangularized.

GiD_Thumbnail get_vectorial obj --> returns a list with 3 elements:

1st - the obj file contents (refers to the 'ObjInMemory.mtl' material library file eventually)

2nd - (optional) the mtl file contents (i.e. the 'ObjInMemory.mtl', may refer to the 'ObjInMemory.png')

3rd - (optional) the texture data (the ''ObjInMemory.png' binary data)

The returned data can be written directly in a file

Example:

 get_statistics_mean

It returns an array of three real numbers with the mean of r g b components of all image pixels. (values from 0.0

to 255.0)

e.g.

->254.5277054398148 254.52159288194446 254.51443142361111

GiD_GetWorldCoord screen_x screen_y

Given the screen coordinates (screen_x, screen_y) returns a list with six coordinates:

{ x y z nx ny nz }

being

(x,y,z) the coordinates mapped into the world (model) of the screen coordinates,

(nx,ny,nz) the normal vector components of the world (model) pointing to the user.

GiD v17

Copyright © 2024, GiD, CIMNE 259

set togl [GiD_Togl current]

GiD_Togl current $togl

set togls [GiD_Togl list]

The mapping screen --> world (model) is done by intersecting the line perpendicular to the screen, passing

through the coordinates (screen_x,screen_y), with the plane parallel to the screen (in real model world) at the

centre of the view / model. The returned normal is the normal of this plane.

GiD_Togl current|list|pick_one

A togl object is a Tk widget that allow draw using OpenGL commands

GiD_Togl current ?<togl>?

To get or set the current togl (Tk OpenGL object),

GiD_Togl list

To get the list of all togl's of all windows

GiD_Togl pick_one <togl_name> point|line|surface|volume|dimension|node|element|axis <x> <y>

To get the entity id of this category, if any, located on the x,y screen integer coordinates.

Example:

GiD_GetUserSettingsFilename ?-create_folders? ?-ignore_alternative_configuration_file?

To get the file name where the user settings are stored.

If -create_folders flag is provided, then all intermediate folders are created if doesn't exists

If -ignore_alternative_configuration_file flag is provided, then alternative_file provided by -c or -c2 command line

argument is ignored.

GiD_GetUserSettingsCommonDirectory ?-create_folders?

Similar to GiD_GetUserSettingsFilename but return the common directory, not depend on GiD version or -c / -

c2 command line flags

HTML help support

Problem type developers can take advantage of the internal HTML browser if they wish to provide online help.

The GiDCustomHelp procedure below is how you can show help using the new format:

GiDCustomHelp ?args?

where args is a list of pairs option value. The valid options are:

 -title : specifies the title of the help window. By default it is "Help on <problem_type_name>".

 -dir : gives the path for the help content. If -dir is missing it defaults to "<ProblemType dir>/html".

Multilingual content could be present; in such a case it is assumed that there is a directory for each language

provided. If the current language is not found, language 'en' (for English) is tried. Finally, if 'en' is not found

the value provided for -dir is assumed as the base directory for the help content.

 -start : is a path to an html link (and is relative to the value of -dir).

GiD v17

Copyright © 2024, GiD, CIMNE 260

HelpDirs {html-version "GiD Help" "intro/intro.html"} \

{html-customization "GiD Customization"} \

{html-faq "Frequently Asked Questions"} \

{html-tutorials "GiD Tutorials" "tutorials_toc.html"} \

{html_whatsnew "What's New"}

TocPage gid_toc.html

TocPage contents.ht DT

HelpDirs

With HelpDirs we can specify which of the subdirectories will be internal nodes of the help tree. Moreover, we

can specify labels for the nodes and a link to load when a particular node is clicked. The link is relative the

node. For instance:

Structure of the help content

Assuming that html has been chosen as the base directory for the multilingual help content, the following

structure is possible:

html

| en - English content

| es - Spanish content

Each content will probably have a directory structure to organize the information. By default the help system

builds a tree resembling the directory structure of the help content. In this way there will be an internal node for

each subdirectory, and the html documents will be the terminal nodes of the tree.

You can also provide a help.conf configuration file in order to provide more information about the structure of

the help. In a help file you can specify a table of contents (TocPage), help subdirectories (HelpDirs) and an

index of topics (IndexPage).

TocPage

TocPage defines an html page as a table of contents for the current node (current directory). We have

considered two ways of specifying a table of contents:

 ... (default)

<DT> <DL> ... </DT>

The first is the one generated by texinfo.

For instance:

GiD v17

Copyright © 2024, GiD, CIMNE 261

IndexPage html-version/gid_18.html html-faq/faq_11.html

IndexPage

If we specify a topic index by IndexPage, we can take advantage of the search index. In IndexPage we can

provide a set of html index pages along with the structure type of the index. The type of the index could be:

<DIR> ... </DIR> (default)

 ... (only one level of)

The first is the one generated by texinfo.

For instance:

Managing menus

GiD offers you the opportunity to customize the pull-down menus. You can add new menus or to change the

existing ones. If you are creating a problem type, these functions should be called from the InitGIDProject or

InitGIDPostProcess functions (see TCL AND TK EXTENSION).

Note: Menus and option menus are identified by their names.

Note: It is not necessary to restore the menus when leaving the problem type, GiD does this automatically.

The Tcl functions are:

 GiDMenu::Create { menu_name_untranslated prepost {pos -1} {translationfunc _} }

Creates a new menu. New menus are inserted between the Calculate and Help menus.

 menu_name_untranslated: text of the new menu (English).

 prepost can have these values:

"PRE" to create the menu only in GiD Preprocess.

"POST" to create the menu only in GiD Postprocess.

"PREPOST" to create the menu in both Pre- and Postprocess.

 pos: optional, index where the new menu will be inserted (by default it is inserted before the 'Help' menu)

 translationfunc: optional, must be _ for GiD strings (default), or = for problemtype strings

 GiDMenu::Delete { menu_name_untranslated prepost {translationfunc _} }

Deletes a menu.

 menu_name_untranslated: text of the menu to be deleted (English).

GiD v17

Copyright © 2024, GiD, CIMNE 262

 prepost can have these values:

"PRE" to delete the menu only in GiD Preprocess.

"POST" to delete the menu only in GiD Postprocess.

"PREPOST" to delete the menu in both Pre- and Postprocess.

 translationfunc: optional, must be _ for GiD strings (default), or = for problemtype strings

 GiDMenu::InsertOption { menu_name_untranslated option_name_untranslated position prepost

command {acceler ""} {icon ""} {ins_repl "replace"} {translationfunc _} }

Creates a new option for a given menu in a given position (positions start at 0, the word 'end' can be used for

the last one).

 menu_name_untranslated: text of the menu into which you wish to insert the new option (English), e.g

"Utilities"

 option_name_untranslated: name of the new option (English) you want to insert.

The option name, is a menu sublevels sublevels list, like [list "List" "Points"]

If you wish to insert a separator line in the menu, put "---" as the option_name.

 position: position in the menu where the option is to be inserted. Note that positions start at 0, and

separator lines also count.

 prepost: this argument can have the following values:

"PRE" to insert the option into GiD Preprocess menus.

"POST" to insert the option into GiD Postprocess menus.

"PREPOST" to insert the option into both Pre- and Postprocess menus.

 command: is the command called when the menu option is selected.

 acceler: optional, key accelerator, like "Control-s"

 icon: optional, name of a 16x16 pixels icon to show in the menu

 ins_repl: optional, if the argument is:

 replace: (default) the new option replaces the option in the given position

 insert: the new option is inserted before the given position.

 insertafter: the new option is inserted after the given position.

 translationfunc: optional, must be _ for GiD strings (default), or = for problemtype strings

 GiDMenu::RemoveOption {menu_name_untranslated option_name_untranslated prepost

{translationfunc _}}

Removes an option from a given menu.

 menu_name_untranslated: name of the menu (English) which contains the option you want to remove. e.

g "Utilities"

 option_name_untranslated: name of the option (English) you want to remove. The option name, is a

menu sublevels list, like [list "List" "Points"]

 prepost: this argument can have the following values:

"PRE" to insert the option into GiD Preprocess menus.

"POST" to insert the option into GiD Postprocess menus.

"PREPOST" to insert the option into both Pre- and Postprocess menus.

 translationfunc: optional, must be _ for GiD strings (default), or = for problemtype strings

GiD v17

Copyright © 2024, GiD, CIMNE 263

GiD_RegisterExtensionProc ".gif .png" PRE MyImageProcedure

To remove separators, the option_name is — , but you can append an index (starting from 0) to specify which

separator must be removed, if there are more than one.

e.g.

GiDMenu::RemoveOption "Geometry" [list "Create" "---2"] PRE

 GiDMenu::ModifyOption { menu_name_untranslated option_name_untranslated prepost

new_option_name {new_command -default-} {new_acceler -default-} {new_icon -default-}

{translationfunc _} }

Edit an existent option from a given menu

some parameters can be '-default-' to keep the current value for the command, accelerator, etc

 GiDMenu::UpdateMenus {}

Updates changes made on menus. This function must be called when all calls to create, delete or modify menus

are made.

 GiD_RegisterPluginAddedMenuProc and GiD_UnRegisterPluginAddedMenuProc

This commands can be used to specify a callback procedure name to be called to do some change to the

original menus

GiD_RegisterPluginAddedMenuProc <procname>

GiD_UnRegisterPluginAddedMenuProc<procname>

The procedure prototype to be registered must not expect any parameter, something like this.

proc <procname> { } {

... do something ...

}

e.g. a plugin can modify a menu to add some entry, but this entry will be lost when GiD create again all menus,

for example when starting a new model. Registering the procedure will be applied again when re-creating

menus.

 GiD_RegisterExtensionProc and GiD_UnRegisterExtensionProc

This tcl command must be used to register a procedure that is able to handle when using 'drag and drop' of a

file on the GiD window.

It is possible to specify the extension (or a list of extensions) of the files to be handled, the mode PRE or POST

where it will be handled, and the name of the callback procedure to be called.

GiD_RegisterExtensionProc <list of extensions> <prepost> <procname>

GiD_UnRegisterExtensionProc <list of extensions> <prepost>

<extension> is the file extension, preceded by a dot

<prepost> could be PRE or POST

The procedure prototype to be registered must expect a single parameter, the dropped file name, something

like this.

proc <procname> { filename } {

... do something ...

}

Example:

GiD v17

Copyright © 2024, GiD, CIMNE 264

GiDMenu::Create "New Menu" "PRE" -1 =

GiDMenu::InsertOption "New Menu" [list "Option 1"] 0 PRE "Command_1" ""

"" replace =

GiDMenu::InsertOption "New Menu" [list "Option 2"] 1 PRE "Command_2" ""

"" replace =

GiDMenu::InsertOption "New Menu" [list "---"] 2 PRE "" "" "" replace =

GiDMenu::InsertOption "New Menu" [list "Option 3"] 3 PRE "Command_3" ""

"" replace =

GiDMenu::InsertOption "Help" [list "My Help"] 1 PRE "" "" "" insert _

GiDMenu::InsertOption "Help" [list "My Help" "My help 1"] 0 PRE

"Command_help1" "" "" replace _

GiDMenu::InsertOption "Help" [list "My Help" "My help 2"] 1 PRE

"Command_help2" "" "" replace _

GiDMenu::RemoveOption "Help" [list "Customization Help"] PRE _

GiDMenu::RemoveOption "Help" [list "What is new"] PRE _

GiDMenu::RemoveOption "Help" [list "FAQ"] PRE _

GiDMenu::UpdateMenus

EXAMPLE: creating and modifying menus

In this example we create a new menu called "New Menu" and we modify the GiD Help menu:

The code to make these changes would be:

Custom data windows

In this section the Tcl/Tk (scripted) customization of the look and feel of the data windows is shown. The layout

of the properties drawn in the interior of any of the data windows - either Conditions, Materials, Interval Data or

Problem Data - can be customized by a feature called TkWidget; moreover, the common behaviour of two

specific data windows, Conditions and Materials, can be modified by a Tcl procedure provided for that purpose.

This common behaviour includes, in the case of Materials for example, assigning/unassigning, drawing,

geometry types, where to assign materials, creating/deleting materials, etc.

TkWidget

The problem type developer can change the way a QUESTION is displayed and if he wishes he can also

GiD v17

Copyright © 2024, GiD, CIMNE 265

CONDITION: Steel_section

CONDTYPE: over lines

CONDMESHTYPE: over body elements

QUESTION: Local_Axes#LA#(-Default-,-

Automatic-)

VALUE: -Default-

QUESTION: SteelName

VALUE: IPN-80

QUESTION: SteelType

VALUE: A37

END CONDITION

proc TKWidgetProc {event args} {

switch $event {

INIT {

...

}

SYNC {

...

}

DEPEND {

...

}

CLOSE {

...

}

}

}

change the whole contents of a window, while maintaining the basic behavior of the data set, i.e. in the

Condition window: assign, unassign, draw; in the Material window: create material, delete material; and so on.

With the default layout for the data windows, the questions are placed one after another in one column inside a

container frame, the QUESTION's label in column zero and the VALUE in column one. For an example see

picture below.

The developer can override this behavior using TKWIDGET. TKWIDGET is defined as an attribute of a

QUESTION and the value associated with it must be the name of a Tcl procedure, normally implemented in a

Tcl file for the problem type. This procedure will take care of drawing the QUESTION. A TKWIDGET may also

draw the entire contents of the window and deal with some events related to the window and its data.

The prototype of a TKWIDGET procedure is as follow:

GiD v17

Copyright © 2024, GiD, CIMNE 266

TKWIDGET: GidUtils::TkwidgetEntryConfigure {-width 20}

proc GidUtils::TkwidgetEntryConfigure { configure_options event args } {

...

}

Note: It is also allowed to add extra arguments before the 'event' argument, and provide its values in

theTKWIDGET field

e.g. declare this tkwidget procedure with a first argument "-width 20"

and then define the Tcl procedure ready to get the first extra argument 'configure_options' before 'events':

The argument event is the type of event and args is the list of arguments depending on the event type. The

possible events are: INIT, SYNC, CLOSE and DEPEND. Below is a description of each event.

INIT: this event is triggered when GiD needs to display the corresponding QUESTION and the list of

arguments is {frame row-var GDN STRUCT QUESTION}: frame is the container frame where the widget

should be placed; row-var is the name of the variable, used by GiD, with the current row in the frame; GDN

and STRUCT are the names of internal variables needed to access the values of the data; QUESTION is the

QUESTION's name for which the TKWIDGET procedure was invoked. Normally the code for this event

should initialize some variables and draw the widget.

SYNC: this is triggered when GiD requires a synchronization of the data. Normally it involves updating some

of the QUESTIONs of the data set. The argument list is {GDN STRUCT QUESTION}.

CLOSE: this is triggered before closing the window, as mentioned this can be canceled if an ERROR is

returned from the procedure.

DEPEND: this event is triggered when a dependence is executed over the QUESTION for which the

TKWIDGET is defined, ie. that QUESTION is an lvalue of the dependence. The list of arguments is {GDN

STRUCT QUESTION ACTION value} where GDN, STRUCT and QUESTION are as before, ACTION could

be SET, HIDE or RESTORE and value is the value assigned in the dependence.

The argument args is a variable amount of arguments, provided here as a list. Its content depends on the

'event' argument.

e.g.

INIT args: PARENT CURRENT_ROW_VARIABLE GDN STRUCT QUESTION

SYNC args: GDN STRUCT QUESTION

DEPEND args: GDN STRUCT QUESTION ACTION VALUE

CLOSE args: GDN STRUCT QUESTION

and its meaning is:

CURRENT_ROW_VARIABLE: store a name of variable that provide the integer row number of the current field

GDN and STRUCT: identify the data (e.g set value [DWLocalGetValue $GDN $STRUCT $QUESTION])

QUESTION is the name of the question that identify the field

ACTION could be "HIDE", "SET" or "RESTORE"

The procedure should return:

GiD v17

Copyright © 2024, GiD, CIMNE 267

CONDITION:

Steel_section

CONDTYPE: over lines

CONDMESHTYPE: over

body elements

QUESTION:

Local_Axes#LA#(-

Default-,-Automatic-)

VALUE: -Default-

QUESTION: SteelName

VALUE: -

QUESTION: SteelType

VALUE: -

TKWIDGET: SteelSections

END CONDITION

 an empty string "" meaning that every thing was OK;

 a two-list element {ERROR-TYPE Description} where ERROR-TYPE could be ERROR or WARNING.

ERROR means that something is wrong and the action should be aborted. If ERROR-TYPE is the

WARNING then the action is not aborted but Description is shown as a message. In any case, if Description

is not empty a message is displayed.

The picture below shows a fragment of the data definition file and the GUI obtained. This sample is taken from

the problem type RamSeries/rambshell and in this case the TKWIDGET is used to create the whole contents of

the condition windows. For a full implementation, please download the problem type and check it.

Predefined TKWIDGET procedures:

There are some useful features that have been implemented in tcl procedures provided by default in GiD, inside

the dev_kit.tcl file,

specially to replace the standard entry of a question by some specialized widget.

 GidUtils::TkwidgetGetFilenameButton

To show an entry and a select file button that open the dialog window to select an existent file.

 GidUtils::TkwidgetPickPointOrNode

GiD v17

Copyright © 2024, GiD, CIMNE 268

To show an entry and a button to pick in screen the id number of a point in geometry mode or a node in mesh

mode

 GidUtils::TkwidgetGetLayername

To show a combobox with the current layers

 GidUtils::TkwidgetGetGroupname

To show a combobox with the current groups

 GidUtils::TkwidgetGetVector3D

To show in a single row three entries for x, y, z real coordinates of points or directions.

Data windows behavior

In this subsection we explain a Tcl procedure used to configure the common behavior of Materials. We are

working on providing a similar functionality for Conditions using the same interface.

GiD_DataBehaviour controls properties of data windows for Materials and Conditions (not currently

implemented). For Materials we can modify the behavior of assign, draw, unassign, impexp (import/export),

new, modify, delete and rename. We can also specify the entity type list with the assign option through the

subcommands geomlist and meshlist.

The syntax of the procedure is as follows:

GiD_DataBehaviour data_class name ?cmd? proplist

where

 data_class could be "material" if we want to modify the behaviour of a particular material, or "materials" if a

whole book is to be modified;

 name takes the value of a material's name or a book's name, depending on the value of data_class;

In case that the materials are not classified in books the keyword "Default" means its default implicit book.

 cmd can take one of the values: show, hide, disable, geomlist and meshlist;

 proplist is a list of options or entity types. When the value of cmd is show, hide or disable, then proplist can

be a subset of {assign draw unassign impexp new modify delete}. If the value of cmd is show it makes the

option visible, if the value is hide then the option is not visible, and when the value is disable then the option

is visible but unavailable. When the value of cmd is geomlist then proplist can take a subset of {points lines

surfaces volumes} defining the entities that can have the material assigned when in geometry mode; if the

GiD v17

Copyright © 2024, GiD, CIMNE 269

GiD_DataBehaviour materials Default geomlist {surfaces volumes}

GiD_DataBehaviour materials Solid hide {delete impexp}

GiD_ShowBook materials tables 0

GiDMenu::UpdateMenus

value of cmd is meshlist then proplist can take the value elements. Bear in mind that only elements can have

a material assigned in mesh mode. If cmd is not provided, the corresponding state for each of the items

provided in proplist is obtained as a result.

Example:

GiD_ShowBook is a procedure to hide/show a book from the menus

GiD_ShowBook class book show
where

 class must be: gendata materials conditions or intvdata

 book is the name of the book to be show or hidden

 show must be 0 or 1

After change the book properties is necessary to call to GiDMenu::UpdateMenus

Example:

Interaction with themes

From GiD 11, a themes system has been integrated inside GiD.

In the following chapters, how to manage and use these system is explained in order to get a full integrated look

of your module.

A theme contain:

 visual aspect as colors and shape of toolbars and windows.

 collection of cursors.

 collection of images (images can be classified in 2 categories, images on a root folder: logos, auxiliar

images, ... and images representin icons, this ones can be found on subfolders grouped by image size).

 Definitions of which icon size is used in each categories (toolbars, menus).

 Default colors of entities and background (this colors will be applied to user the first time that the theme is

charged, after that, user could change colors by going to preferences)

Now there are ony two themes inside GiD: GiD_classic and GiD_black.

As this manual is for modules developers, you must know that the most common situation is to use most

images provided by GiD and for only the new icons that you want to use in your module, implement the themes

structure inside your module, creating the appropiated folder structure and configuration files, and providing

images of the new icons for each theme.

Common

See source code of gid_themes package inside the scripts folder.

GiD v17

Copyright © 2024, GiD, CIMNE 270

gid_themes::GetThemes

GiD_Set Theme(Current)

gid_themes::GetThemes

Return the list of available themes

Example:

-> GiD_black GiD_classic GiD_classic_renewed

GiD_Set Theme(Current)|Theme(Size)|Theme(MenuType)|Theme(HighResolutionScaleFactor)

Some theme options can be accesed to get/set as GiD variables, with the GiD_Set command

 Theme(Current) ?<theme_name>?

To get or set the current theme in use (to set a theme it is necessary a GiD restart)

Example:

-> GiD_classic

 Theme(Size)

Integer index that represent the incons collection size (small, medium, large,...)

 Theme(MenuType)

could be:native,generic

native:

On Mac OS X: use traditional Apple's menu bar intead of embed the menu bar inside the GiD main window

On Windows: use native menus

On Linux: is the same as generic

generic: Use Tk buttons for the menus

 Theme(HighResolutionScaleFactor)

Double value to scale the icons (1.0 by default), to avoid problems with some screen resolutions.

Asking for images

Use in your module the same image as GiD use

In order to use an image that GiD use, you must use the tcl function gid_themes::GetImage, to see a complete

list of images available you can take a look for example to the folder:

(GiD Folder)\themes\GiD_classic\images\large_size(24andmore)

proc gid_themes::GetImage { filename IconCategory }

IconCategory could be: "small_icons", "medium_icons", "large_icons", "menu", "toolbar"

There is another IconCategory, "generic", that is the category used when the parameter is omitted. Using this

category the image is retrieved from root image folder (Example: (GiD Folder)\themes\GiD_classic\images\),

GiD v17

Copyright © 2024, GiD, CIMNE 271

gid_themes::GetImage surface.png toolbar

proc InitGIDProject { dir } {

set full_path_filename [file join $dir my_images_folder my_image.png]

set img [gid_themes::GetImage $full_path_filename]

...

}

<MODULE_THEME name="GiD_classic">

<version>1.1</version>

<alternative_theme>GiD_black</alternative_theme>

<SizeDefinitions>

<SizeDefinition name='small_size'>

<label>small size</label>

<folder>small_size(16andmore)</folder>

<alternative_folder>GiD_black/images/size16<

/alternative_folder>

</SizeDefinition>

but the use of this category its not recommended, since images from root folders are not guaranteed on future

versions.

The corresponding folder for each icon category is defined on the configuration of theme (will be one of the

subfolders inside image folder)

Example: To get surface image for use on a button.

This will return appropriate image depending on current theme, it could be for example:

(GiD Folder)\themes\GiD_classic\images\large_size(24andmore)\surface.png

Use in your module your own images

If your module needs other images from ones supplied by GiD

You can use:

gid_themes::GetImageModule to get the appropriate image, from inside the module folder, depending on

current theme.

gid_themes::GetImage { full_path_filename } , image will be equal regardless of current theme. This is the 'old

style', with the module images stored as module developer want, without follow the previously recommended

folder layout.

Note: the full_path_filename points to a 'module' file, but it must be build in a relative way, based on the

problemtype location.

e.g.

To use proc gid_themes::GetImageModule { filename IconCategory }, you must replicate folder structure of

(GiD Folder)\themes\ inside your module folder.

inside each theme must be a configuration.xml file (could be a copy of the one found in GiD) but also can be

configured with only the following parameters:

GiD v17

Copyright © 2024, GiD, CIMNE 272

The option "alternative_theme" its used if some file its not found, for try to find on the alternative theme

(example themes still on develop)

Also using this redirection, a complete themes that module is not interested on can be redirected to our main

theme, in this case we will need just 1 folder for each theme and configuration.xml inside it.

Note: for high resolution displays, with high DPI, check also the proc gid_themes::

getDefaultHighResolutionScaleFactor {} to scale you images. This functions returns a scale factor, which

may be changed by the user in the preferences window, you'll need to scale your custom images and fonts.

This factor is initially set to a value so that the medium theme size icons are legible in high DPI screens.

The above mentioned functions, gid_themes::GetImage and gid_themes::GetImageModule already take into

account this factor.

Forcing themes use

When a module is loaded from inside GiD, module can not control theme configuration.

But if you are installing GiD together with your module, there is a variable inside scripts/ConfigureProgram.tcl to

control how GiD manage themes.

The variable is ::GidPriv(ThemeSelection), and its value can be:

 1 (by default), user can choose the theme selection

 Any existing theme (Example: GiD_classic), user will be forced to use this theme and options on menus and

windows about themes will be disabled.

With this option its possible to obtain a package gid+module totally customiced with your prefered visual aspect.

Creating new themes

Create themes are only for modules that distribute they own package including GiD, or for GiD developers.

If you have created a theme for GiD and want that the theme will be distributed with GiD, just contact us at:

gid@cimne.upc.edu

An example of a customized theme is GiD classic renewed, which can be found in GiD's Data --> Problem type

<SizeDefinition name='large_size'>

<label>large size</label>

<folder>large_size(24andmore)</folder>

<alternative_folder>GiD_black/images/size24</alternative_folder>

</SizeDefinition>

</SizeDefinitions>

<IconCategories>

<menu>small_size</menu>

<toolbar>large_size</toolbar>

<small_icons>small_size</small_icons>

<large_icons>large_size</large_icons>

</IconCategories>

</MODULE_THEME>

mailto:gid@cimne.upc.edu

GiD v17

Copyright © 2024, GiD, CIMNE 273

<GID_THEME name="GiD_black">

<info> theme name is the same as its folder name

images folder is always "GiD/themes/(name of theme)/images

/"

cursors folder is always "GiD/themes/(name of theme)

/cursors/"

if it does not find a folder it will use the alternative

definition

size folder start inside "images" theme folder

alternative folder start from "GiD/themes/" folder

</info>

<label>GiD Black</label>

<version>1.1</version>

<alternative_theme>GiD_classic</alternative_theme>

<SizeDefinitions>

<SizeDefinition name='small_size'>

<label>small size</label>

<folder>size16</folder>

<alternative_folder>GiD_classic/images/small_size(16andmore)<

/alternative_folder>

</SizeDefinition>

--> Internet retrieve:

After downloading it, go to the Preferences window, select Graphical --> Appearance in the left tree and select

the GiD classic renewed under GiD theme. GiD will ask you to restart the program for the changes to take effect.

Look of the GiD classic renewed theme:

This theme is a work in progress and new version will be released with new icons.

For creating a new theme you must know.

Inside (GiD_Folder)/themes:

Each folder represent a theme (Example (GiD_Folder)/themes/GiD_black)

Inside each folder must be a configuration.xml

This file must contain the following information:

GiD v17

Copyright © 2024, GiD, CIMNE 274

<SizeDefinition name='large_size'>

<label>large size</label>

<folder>size20</folder>

<alternative_folder>GiD_classic/images/large_size(24andmore)<

/alternative_folder>

</SizeDefinition>

</SizeDefinitions>

<IconCategories>

<IconCategory name='menu'>size16</IconCategory>

<IconCategory name='toolbar'>size20</IconCategory>

<IconCategory name='small_icons'>size16</IconCategory>

<IconCategory name='large_icons'>size20</IconCategory>

</IconCategories>

<OnlyDefineColorsOnMainGiDFrame>false</OnlyDefineColorsOnMainGiDFrame>

<TtkTheme>newgid</TtkTheme>

<TkFromTheme>true</TkFromTheme>

<BackgroundColor> 000#000#000 </BackgroundColor>

<BackColorType> 1 </BackColorType>

<BackColorTop> #000000 </BackColorTop>

<BackColorBottom> #323c4b </BackColorBottom>

<BackColorSense> d </BackColorSense>

<ColorPoints> 220#220#220 </ColorPoints>

<ColorNodes> 220#220#220 </ColorNodes>

<ColorLines> 091#094#225 </ColorLines>

<ColorPolyLines> 000#143#039 </ColorPolyLines>

<ColorSurfaces> 218#036#220 </ColorSurfaces>

<ColorSurfsIsoparametric> 220#218#036 </ColorSurfsIsoparametric>

<ColorVolumes> 086#217#216 </ColorVolumes>

<ColorElements> 153#153#153 </ColorElements>

</GID_THEME>

This file configure colors of entities and background, also which images to display and where to find images, but

for total different look of GiD, you must understand this 3 lines:

<OnlyDefineColorsOnMainGiDFrame>false</OnlyDefineColorsOnMainGiDFrame>

<TtkTheme>newgid</TtkTheme>

<TkFromTheme>true</TkFromTheme>

If option OnlyDefineColorsOnMainGiDFrame is true, only GiD's main frame will be modified with the visual

aspects, windows and other elements will remain in native look (as GiD_classic does)

The second option associate a ttk theme in this case is <TtkTheme>newgid</TtkTheme>, the configuration of

ttk themes can be found on: (GiD_Folder)\scripts\gid_themes\ttk_themes\ by changing the ttk configuration, we

can achieve any look of GiD.

GiD v17

Copyright © 2024, GiD, CIMNE 275

proc InitGIDProject { dir } {

set VersionRequired "10.0"

if {[GidUtils::VersionCmp $VersionRequired] < 0 } {

WarnWin [= "This interface requires GiD %s or later"

$VersionRequired]

}

}

The last option TkFromTheme its important to obtain a complete integrated look, Tk colors will be adapted with

ttk colors, we recomment oposite value of OnlyDefineColorsOnMainGiDFrame (true=> false, false=>true)

GiD version

The version of GiD is returned by GiD_Info gidversion

Normally, a problem type requires a minimum version of GiD to run. Because the problem type can be

distributed or sold separately from GiD, it is important to check the GiD version before continuing with the

execution of the problem type. GiD offers a function, GidUtils::VersionCmp, which compares the version of the

GiD currently being run with a given version.

GidUtils::VersionCmp { Version }

This returns a negative integer if Version is greater than the currently executed GiD version; zero if the two

versions are identical; and a positive integer if Version is less than the GiD version.

Example:

GiD v17

Copyright © 2024, GiD, CIMNE 276

<InfoPlugin version="1.0">

<Program>

<Name>Collada</Name>

PLUG-IN EXTENSIONS

This section explains a new way to expand GiD capabilities: the plug-in mechanism.

Plug-ins which should be used by GiD shoud be present inside the $GID/plugins directory.

There are two possible plugin mechanisms:

 Tcl plug-in

 GiD Dynamic library plug-in

Tcl plug-in

If a file with extension .tcl is located inside the GiD 'plugins' folder, with the same name as the folder containing

it, then it is automatically sourced when starting GiD.

To avoid source some unwanted tcl file is is also required the existence of an XML file with the same name as

the folder and .xml extension, and a syntax like this:

GiD v17

Copyright © 2024, GiD, CIMNE 277

proc GiD_RegisterPluginGenerateSphereMesh { value procedure label

require_tetrahedra }

This allow to do what the developer want, with Tcl language, e.g. change menus, source other Tcl files or load a

'Tcl loadable library' that extend the Tcl language with new commands implemented at C level.

To know how to create a 'Tcl loadable library' some Tcl book must be read.

See chapter about 'C Programming for Tcl' of

"Practical Programming in Tcl and Tk" by Brent Welch, Ken Jones, and Jeff Hobbs at http://www.beedub.com

/book

Tcl Mesh plug-in

This is a particular case of a Tcl plug-in to generate the mesh from geometric entities.

It is a special case, because it require that GiD invoke our procedures while meshing, and provide the input of

each geometric entity, and store the generated mesh, and it require also to offer this new algorithm as possible

meshing method, and handle its generic parameters with the model and in preferences.

GiD nowadays is ready to implement only plugins of volume mesher of spheres (and circles for surfaces), other

cases must be implemented in a similar way in the future…

An example of mesh plug-in is the 'granular' mesher to generate spheres or circles.

it is implemented by the files of the folder <GiD>\plugins\Mesh\Spheres

GiD mesh plug-in mechanism:

1- Register the meshing procedure

To register a new sphere volume mesher this proc must be called

value is an integer that identify the value of the mesher (a GiD variable store the kind of sphere mesher to be

used)

the value 0 is reserved for the GiD inner sphere mesher

the value 1 is used for the “Granular” mesher

other values must be used for future sphere meshers…

procedure is a tcl procedure that will be called by GiD when meshing each volume (in case that was marked

to be meshed with spheres). This procedure must have this prototype:

<Version>0.1</Version>

<MinimumGiDVersion>14.1.8d</MinimumGiDVersion>

<Description>GiD plugin to import Collada .dae files<

/Description>

<NewsInVersion version="0.1" date="2019-11-01">

* First version import triangles mesh with texture

</NewsInVersion>

</Program>

</InfoPlugin>

http://www.beedub.com/book
http://www.beedub.com/book

GiD v17

Copyright © 2024, GiD, CIMNE 278

#register the procedure Spheres::GenerateSpheres as GiD-Tcl event to

generate the mesh when the value of SphereMesher is 1 (showed with

label $info_plugin(Name))

GiD_RegisterPluginGenerateSphereMesh 1 Spheres::GenerateSpheres

$info_plugin(Name) 0

proc Spheres::GenerateSpheres { id_entity input_mesh

input_boundary_parts size } {

...

return [list $nodes_coordinates $element_radius

$output_boundary_parts]

}

id_entity is the id of the volume that will be meshed

input_mesh defines the input mesh: nodes coordinates and elements (if require_tetrahedra ==0 the triangles of

the boundary that define the volume)

== [list [GiD_Info Mesh Nodes 1 end -array] [GiD_Info Mesh Elements Triangle 1 end -array]]

input_boundary_parts allow define parts of the boundary associated to each surface of the volume, to allow

classify the output spheres mesh related to these surfaces, to apply boundary conditions, layers, groups,

materials…

size is the general mesh size asked by the user

The procedure inside must do what he want, in this case write the information in a temporary file, and start

sphere_mesher.exe, the is the really sphere mesher, read its results in another auxiliary file, and finally return

the data as three items, to define the sphere centers, its radius, and possible extra classification of parts.

return [list $nodes_coordinates $element_radius $output_boundary_parts]

 label is the string that will identify the mesher in GiD windows (Utilities->Preferences… Meshing->Sphere

/Circle)

 require_tetrahedra must be 0 or 1 (0 if the input of the mesher are the triangles closing the volume to be

meshed with spheres, 1 if it require the tetrahedra filling the volume)

The file Spheres.tcl do this:

and define the procedure that somehow do the mesh, and return it in the format expected by GiD

Then the registered name "Granular" appear as a meshing method to generate circles and/or spheres in the

preferences window

proc procname { id_entity input_mesh input_boundary_parts size } {

...

return [list $nodes_coordinates $element_radius

$output_boundary_parts]

}

GiD v17

Copyright © 2024, GiD, CIMNE 279

class that store the mesher variables derived from GiDMeshVariables

package require TclOO

if { [info commands SphereMeshVariables] != "" } {

SphereMeshVariables destroy ;#to protect of multiple source

}

oo::class create SphereMeshVariables {

superclass GiDMeshVariables

#variables showed in preferences:

variable MinRadiusFactor MaxRadiusFactor PartSizeDist

2- Mesh parameters

Usually the mesher will require some general parameters, and several copies of these parameters must be

handled by GiD.

A copy of values is used to fill the Utilities->Preferences... Meshing window

Another copy of values is used the model, and saved/restored with it in disk

A third copy is used while meshing, with the values of one of them: from current preferences or from the

previous values of the model

To handle several copies Granular.tcl uses the package TclOO to define a class with the variables required for

the mesher.

This class is named SphereMeshVariables and must be derived from GiDMeshVariables

GiD v17

Copyright © 2024, GiD, CIMNE 280

variable DistributionParam,StandarDeviation DistributionParam,Scale

DistributionParam,Width

variable Random BoundaryTolerance

#variables hidden in preferences:

variable ParticleType

variable Seed Advanced Priority

variable HighPorosity Porosity

constructor { owner } {

next $owner ;#to invoke the parent

constructor

}

method GetDefault { key } {

if { $key == "ParticleType" } {

set value 1

} elseif { $key == "MaxRadiusFactor" } {

set value 1.2

} elseif { $key == "MinRadiusFactor" } {

set value 0.8

} elseif { $key == "PartSizeDist" } {

set value 0

} elseif { $key == "DistributionParam,StandarDeviation" } {

set value 0.1

} elseif { $key == "DistributionParam,Scale" } {

set value 1.0

} elseif { $key == "DistributionParam,Width" } {

set value 1.0

} elseif { $key == "Random" } {

set value 0

} elseif { $key == "Seed" } {

set value 1

} elseif { $key == "Priority" } {

set value 0

} elseif { $key == "BoundaryTolerance" } {

set value 1.0

} elseif { $key == "Advanced" } {

set value 0

} elseif { $key == "HighPorosity" } {

set value 0

} elseif { $key == "Porosity" } {

set value 0.95

} else {

set value 0

WarnWinText "SphereMeshVariables::GetDefault. Unexpected

key $key"

}

return $value

}

GiD v17

Copyright © 2024, GiD, CIMNE 281

#to register this class as a inner mesher and handle its variables

(used copy in the model, in preferences and the ones to use meshing)

GiD_RegisterPluginMeshVariablesClass SphereMeshVariables

set obj [PluginMeshVariablesClass_GetClassObject SphereMeshVariables

MESHING]

<group name='mesher_granular' label='Granular'>

<labelframe name='sphere_and_circle_main_options' label='Sphere and

circle main options'>

<entry name='boundary_flag' variable='BoundaryTolerance'

variablemanager='Spheres::VariableManager' label='Boundary tolerance

factor' help='Factor to select spheres close to the boundary to apply

conditions' validation='IsFloatingPointPositive'/>

<comboboxframe name='distribution_type' variable='PartSizeDist'

variablemanager='Spheres::VariableManager' label='Distribution type'

help='Type of distribution'>

<option value='0' label='Gauss'

setactivate='distribution_standardeviation min_radius_factor

max_radius_factor'/>

<option value='1' label='Exponential'

And this class is declared (registered) to GiD as 'mesh variables'

The values that are required by the mesher are the ones of 'MESHING'. The object with these values is

obtained with

(the values of 'PREFERENCES' and 'MODEL' are handled internally by GiD to save/restore values with the

model and with the user preferences)

To define how to show in Utilities->Preferences... Meshing these mesh variables a XML file

SpheresPreferences.xml was created with this content:

method IsValid {} {

set valid 1

if { $ParticleType != 1 } {

set valid 0

} elseif { $MinRadius <= 0 } {

set valid 0

}

return $valid

}

export GetDefault IsValid

}

GiD v17

Copyright © 2024, GiD, CIMNE 282

setactivate='distribution_scale min_radius_factor max_radius_factor'/>

<option value='3' label='Cauchy' setactivate='distribution_scale

min_radius_factor max_radius_factor'/>

<option value='5' label='Flat' setactivate='min_radius_factor

max_radius_factor'/>

<option value='6' label='Constant'/>

<entry name='distribution_standardeviation'

variable='DistributionParam,StandarDeviation' variablemanager='Spheres::

VariableManager' label='Standard deviation' help='Standar deviation of

the gaussian distribution' validation='IsFloatingPointPositive'/>

<entry name='distribution_scale' variable='DistributionParam,

Scale' variablemanager='Spheres::VariableManager' label='Scale'

help='?' validation='IsFloatingPointPositive'/>

<entry name='min_radius_factor' variable='MinRadiusFactor'

variablemanager='Spheres::VariableManager' label='Minimum radius

factor' help='Minimum radius=min_factor*mean_radius'

validation='IsFloatingPointPositive'/>

<entry name='max_radius_factor' variable='MaxRadiusFactor'

variablemanager='Spheres::VariableManager' label='Maximum radius

factor' help='Maximum radius=max_factor*mean_radius, max_factor>=1'

validation='IsFloatingPointPositive'/>

</comboboxframe>

</labelframe>

<checkbuttonframe variable='Advanced' variablemanager='Spheres::

VariableManager' label='Advanced options'>

<checkbutton name='random' variable='Random'

variablemanager='Spheres::VariableManager' label='Random mesh'

help='Allow Random Generator Seed'/>

<radiobuttonframe name='prioritize_boundary_or_distribution'

label='Prioritize' variable='Priority' variablemanager='Spheres::

VariableManager' help=''>

<option value='0' label='Boundary fitting' help='Prioritize

boundary fitting'/>

<option value='1' label='Size distribution' help='Prioritize size

distribution'/>

</radiobuttonframe>

<checkbuttonframe variable='HighPorosity' variablemanager='Spheres::

VariableManager' label='High porosity'>

<scale variable="Porosity" variablemanager='Spheres::

VariableManager' whenreadvar="FormatG" from="0.94" to="0.998"

resolution="0.001" showvalue="0" showbuttons="1" needsredraw="1" help="

This option gives the porosity needed to achieve">

<entry width="6" state="readonly" validation="IsFloatingPoint"/>

</scale>

</checkbuttonframe>

</checkbuttonframe>

</group>

GiD v17

Copyright © 2024, GiD, CIMNE 283

proc Spheres::VariableManager { operation var {value ""} } {

return [PluginMeshVariablesClass_VariableManager

SphereMeshVariables $operation $var $value]

}

GiD_ProgressInMeshing $entity_type $id_entity $factor $num_elements

$num_elements

Spheres::VariableManager is a procedure used in this xml to allow set/get/reset these variables in a predefined

way

This new tab is created from the xml definition to represent the parameters required by this meshing algorithm

3- User feedback

Advance bar:

To update a progress bar while meshing the granular procedure is invoking

this update the GiD progress bar, and allow the user stop the meshing (the procedure must stop its work if the

user ask it)

the percent of mesh done could be passed from sphere_mesher.exe in a simple way using an extra file

Error messages:

In case of detect errors, the procedure registered to mesh, instead of return a list of three items, could return a

GiD v17

Copyright © 2024, GiD, CIMNE 284

single item with the error message (provided in an error file written by the mesher).

GiD will finally show the error message in its own standard window.

GiD dynamic library plug-in

This is a particular mechanism of plugin, different of the Tcl-plugin, and it only allows to import mesh and results

in postprocess, and require to compile a special dll with our rules.

Note that 'GiD dynamic libraries' are different of 'Tcl loadable libraries'

'GiD dynamic libraries' must do specifically the task that GiD expects: now it is only available an interface for

libraries that import mesh and create results for GiD postprocess. In the future new interfaces to do other things

could appear, and to be usable must follow the rules explained in this chapter.

Introduction

As the variety of existent formats worldwide is too big to be implemented in GiD and, currently, the number of

supported formats for mesh and results information in GiD is limited, the GiD team has implemented a new

mechanism which enables third party libraries to transfer mesh and results to GiD, so that GiD can be used to

visualize simulation data written in whatever format this simulation program is using.

This new mechanism is the well know mechanism of plug-ins. Particularly GiD supports the loading of dynamic

libraries to read any simulation data and transfer the mesh and results information to GiD.

Viewing GiD as a platform of products, this feature allows a further level of integration of the simulation code in

GiD by means of transferring the results of the simulation to GiD in any format specified by this simulation code

thus avoiding the use of a foreign format.

The recognized plug-ins are automatically loaded in GiD and appear in the top menu bar in the Files->Import-

>Plugins submenu.

In GiD

The recognized import plug-ins appear in the top menu bar under the menu Files->ImportPlugins:

These dynamic libraries can be manually loaded and called via TCL scripts, in GiD post-process's command

GiD v17

Copyright © 2024, GiD, CIMNE 285

The 'tref.off' Object File Format

example

The 'bunny_standford.ply' Polygon File Format

example

#define BUILD_GID_PLUGIN

#include "gid_plugin_import.h"

line, or using the post-process's right menu 'Files ImportDynamicLib' and the options LoadDynamicLib,

UnloadDynamicLib, CallDynamicLib:

For one plug-in library, named MyImportPlugin.dll (or MyImportPlugin.so in Linux or MyImportPlugin.dylib

in mac OS X) to be automatically recognized by GiD and to be loaded and listed in the top's menu Files-

>Import->Plugins, the library should lie inside a directory of the same name, i.e. MyImportPlugin/MyImportPlugin.

dll, under any sub-folder of the %GID%/plugins/Import directory:

Note that only the GiD 32 bits version can handle 32 bits import plug-in dynamic libraries, and only GiD 64 bits

can handle 64 bits import plug-in dynamic libraries. Which version of GiD is currently running can be easily

recognized in the title bar of the main window (Title bar of GiD's window showing 'GiD x64', so the current GiD is

the 64 bits version)

Together with the GiD installation, following import plug-ins are provided:

 OBJ: Wavefront Object format from Wavefront Technologies

 OFF: Object file format vector graphics file from Geomview

 PLY: Polygon file format, aka Stanford Triangle Format, from the Stanford graphics lab.

 PLY-tcl: this plug-in is the same as the above PLY one but with a tcl's progress bar showing the tasks done

in the library while a ply file is imported. For all of these plug-in examples both the source code, the Microsoft

Visual Studio projects, Makefiles for Linux and Mac OS X, and some little models are provided

Developing the plug-in

GiD is compiled with the Tcl/Tk libraries (the Tcl version could be seen in Help->About - More...).

Remember that if the developed plugin is targeted for 32 bits, only GiD 32 bits can handle it. If the developed

plugin is developed for 64 bits systems, then GiD 64 bits is the proper one to load the plugin.

 Header inclusion

In the plug-in code, in one of the .cc/.cpp/.cxx source files of the plug-in, following definition must be made and

following file should be included:

GiD v17

Copyright © 2024, GiD, CIMNE 286

extern "C" GID_DLL_EXPORT int GiD_PostImportFile(const char *filename)

) {

... ;

return 0; // 1 - on error

}

extern "C" GID_DLL_EXPORT const char *GiD_PostImportGetLibName(void) {

return "Wavefront Objects import";

}

extern "C" GID_DLL_EXPORT const char *GiD_PostImportGetFileExtensions(

void) {

return "{{Wavefront Objects} {.obj}} {{All files} {*}}";

}

extern "C" GID_DLL_EXPORT const char *GiD_PostImportGetDescription(

void) {

return "Wavefront OBJ import plugin for GiD";

}

extern "C" GID_DLL_EXPORT const char *GiD_PostImportGetErrorStr(void) {

return _G_err_str; // if error, returns the error string

}

In the other .cc/.cpp/.cxx files which also use the provided functions and types, only the gid_plugin_import.h file

should be included, without the macro definition.

The macro is needed to declare the provided functions as pointers so that GiD can find them and link with its

internal functions.

 Functions to be defined by the plug-in

Following functions should be defined and implemented by the plug-in:

When GiD is told to load the dynamic library, it will look for, and will call these functions:

GiD_PostImportGetLibName : returns the name of the library and should be unique. This name will appear in

the File->Import->Plugin menu and in the right menu.

GiD_PostImportGetFileExtensions : which should return a list of extensions handled by the library and will be

used as filter in the Open File dialogue window.

GiD_PostImportGetDescription: : returns the description of the library and will be displayed in the title bar of

the Open File dialogue window.

Once the library is registered, when the user selects the menu entry File->Import->Plugin->NewPlugin the Open

File dialogue window will appear showing the registered filters and description of the plug-in.

GiD v17

Copyright © 2024, GiD, CIMNE 287

extern "C" int GiD_NewPostProcess(void);

extern "C" int GiD_NewMesh(_t_gidMode gid_mode,

_t_gidMeshType mesh_type, const char *name);

extern "C" int GiD_SetColor(int id, float red, float green, float

blue, float alpha);

extern "C" int GiD_SetVertexPointer(int id,

_t_gidBasicType basic_type,

_t_gidVertexListType list_type,

int num_components,

int num_vertices,

unsigned int offset_next_element,const void *pointer);

extern "C" int GiD_SetElementPointer(int id,

_t_gidBasicType basic_type,

_t_gidElementListType list_type,

_t_gidElementType element_type,

int num_elements,

The file selection window showing the plug-in description as title of the window and filtering the file list with the

registered extension

When the user selects a file then following functions are called:

GiD_PostImportFile : this function should read the file, transfer the mesh and results information to GiD and

return 0 if no problems appeared while the file was read or 1 in case of error.

GiD_PostImportGetErrorStr : this function will be called if the previous one returns 1, to retrieve the error

string and show the message to the user.

Functions provided by GiD

Inside the GiD_PostImportFile function, following functions can be called to pass information to GiD:

GiD v17

Copyright © 2024, GiD, CIMNE 288

Here is the description for each provided function:

GiD_NewPostProcess : starts a new post-process session, deleting all mesh and results information inside

GiD.

GiD_NewMesh : a new mesh will be transferred to GiD and an identifier will be returned so that more

information can be defined for this mesh. Following parameters must be specified:

_t_gidMode gid_mode : may be one of GID_PRE or GID_POST. At the moment only GID_POST is supported

_t_gidMeshType mesh_type : may be one of GIDPOST_NEW_MESH, GIDPOST_MERGE_MESH and

GIDPOST_MULTIPLE_MESH. At the moment only GIDPOST_NEW_MESH has been tested

const char *name : name of the mesh which will appear in the Display Style window.

GiD_SetColor : to specify a color for the mesh identified by the given id. The red, green, blue and alpha

components should be between 0.0 and 1.0.

GiD_SetVertexPointer : sets the vertices of the mesh identified by the given id. This vertices are the ones to be

referred from the element's connectivity. Following parameters may be set:

_t_gidBasicType basic_type : data type of the coordinates of the vertices, should be one of GIDPOST_FLOAT

or GIDPOST_DOUBLE;

_t_gidVertexListType list_type : herewith the format of the vertices is specified. Should be one of

GIDPOST_VERTICES: where all num_components coordinates are specified with no label and so they will be

numerated between 0 and num_vertices-1

GIDPOST_IDX_VERTICES: where each set of num_components coordinates are preceded by a label

indicating its node number (should be a 4-byte integer)

unsigned int offset_next_element,

const void *pointer,

unsigned int offset_float_data,

const void *float_ptr);

extern "C" int GiD_NewResult(const char *analysis_name, double

step_value,

const char *result_name, int mesh_id);

extern "C" int GiD_SetResultPointer(int id,

_t_gidBasicType basic_type,

_t_gidResultListType list_type,

_t_gidResultType result_type,

_t_gidResultLocation result_location,

int num_results,

unsigned int offset_next_element,

const void *pointer);

extern "C" int GiD_EndResult(int id);

extern "C" int GiD_EndMesh(int id);

extern "C" Tcl_Interp *GiD_GetTclInterpreter();

GiD v17

Copyright © 2024, GiD, CIMNE 289

int num_components : number of coordinates per vertex

int num_vertices : number of vertices in the list

unsigned int offset_next_element : distance in bytes between the beginning of vertex i and the beginning of

vertex i + 1. If 0 is entered then the vertices are all consecutive

const void *pointer : pointer to the list of vertices.

GiD_SetElementPointer : sets the elements of the mesh identified by the given id. The elements connectivity

refers to the previous specified list of vertices. Note that for spheres and circles not only their connectivity

should be specified but also their radius and eventually their normal. In this case two separate vectors should

passed: one for the integer data and another one for the floating point data. Following parameters may be set:

_t_gidBasicType basic_type : data type of the extra data entered for sphere and circle elements, should be one

of GIDPOST_FLOAT or GIDPOST_DOUBLE.

_t_gidElementListType list_type : herewith the format of the elements is specified. Should be one of

GIDPOST_CONNECTIVITIES: where all the elements are specified without element number, thus being

automatically numbered between 0 and num_elements-1

GIDPOST_IDX_CONNECTIVITIES: where each element is preceded by a label indicating its element number

(should be a 4-byte integer)

_t_gidElementType element_type : type of element to be defined. May be one of GIDPOST_TRIANGLE,

GIDPOST_QUADRILATERAL, GIDPOST_LINE, GIDPOST_TETRAHEDRON, GIDPOST_HEXAHEDRON,

GIDPOST_POINT, GIDPOST_PRISM, GIDPOST_PYRAMID, GIDPOST_SPHERE, GIDPOST_CIRCLE.

int num_elements : number of elements in the list

unsigned int offset_next_element : distance in bytes between the beginning of element i and the beginning of

element i+1. If 0 is entered then the elements are all consecutive

const void *pointer : pointer to the list of the elements connectivity (integer data)

unsigned int offset_float_data : distance in bytes between the beginning of float data of element i and the

beginning of float data of element i+1. If 0 is entered then the element's float data are all consecutive.

const void *float_ptr : pointer to the list of the floating point data for the elements. For spheres only the radius

should be specified, so just a single value, and for circles four values should be specified: its radius and the

three components of the normal.

GiD_NewResult : a new result will be defined for GiD and an identifier will be returned so that more information

can be defined for this result. Following parameters must be specified:

const char *analysis_name : analysis name of the result

double step_value : step value inside the analysis where the result should be defined

const char *result_name : result name

int mesh_id : mesh identifier where the result is defined. If 0 is entered the result will be defined for all meshes.

GiD_SetResultPointer : specifies the list with the result values for a given result's id. Following parameters

may be set:

_t_gidBasicType basic_type : data type of the results, should be one of GIDPOST_FLOAT or

GIDPOST_DOUBLE

_t_gidResultListType list_type : herewith the format of the results is specified. Should be one of

GIDPOST_RESULTS: where all results are defined consecutively and will refer to the nodes / elements

between 0 and num_results-1

GIDPOST_IDX_RESULTS: where each result is preceded by a label indicating its node /element number

(should be a 4-byte integer)

_t_gidResultType result_type : type of result which will be defined. May be one of GIDPOST_SCALAR,

GIDPOST_VECTOR_2 (vector result with 2 components), GIDPOST_VECTOR_3 (vector with 3 components),

GIDPOST_VECTOR_4 (vector with 4 components, including signed modulus), GIDPOST_MATRIX_3 (matrix

with 3 components Sxx, Syy and Sxy), GIDPOST_MATRIX_4 (Sxx, Syy, Sxy and Szz, GIDPOST_MATRIX_6

(Sxx, Syy, Sxy, Szz and Syz and Sxz), GIDPOST_EULER (with 3 euler angles),

GIDPOST_COMPLEX_SCALAR (real and imaginary part), GIDPOST_COMPLEX_VECTOR_4 (2d complex

vector: Vxr, Vxi, Vyr and Vyi), GIDPOST_COMPLEX_VECTOR_6 (3d complex vector: Vxr, Vxi, Vyr, Vyi, Vzr

and Vzi) and GIDPOST_COMPLEX_VECTOR_9 (3d complex vector: Vxr, Vxi, Vyr, Vyi, Vzr, Vzi, |real part|,

GiD v17

Copyright © 2024, GiD, CIMNE 290

|imaginary part| and signed |vector|)

_t_gidResultLocation result_location : location of the result. May be one of GIDPOST_NODAL,

GIDPOST_ELEMENTAL or GIDPOST_GAUSSIAN. At the moment GIDPOST_GAUSSIAN is not supported

int num_results : number of results in the list

unsigned int offset_next_element : distance in bytes between the beginning of result i and the beginning of

result i+1. If 0 is entered then the results are all consecutive

const void *pointer : pointer to the list of results.

GiD_EndResult : indicates GiD that the definition of the result with the give id is finished. GiD will process the

result.

GiD_EndMesh : indicates GiD that the definition of the mesh with the give id is finished. GiD will process the

mesh.

GiD_GetTclInterpreter : returns a pointer to GiD's global interpreter so that the plug-in can open their windows

or execute their Tcl scripts using the predefined Tcl procedures of GiD.

The developer should keep in mind that all the plug-in code is executed inside GiD's memory space and so, all

the memory allocated inside the plug-in should also be freed inside the plug-in to avoid memory accumulation

when the dynamic library is called repeatedly. This also includes the arrays passed to GiD, which can be

deleted just after passing them to GiD.

List of examples

The plug-in examples provided by GiD also include some little models of the provided import format.

These are the import plug-ins provided by GiD so far:

OBJ: Wavefront OBJ format

This is a starter example which includes the create_demo_triangs function which creates a very simple mesh.

The obj format is a very simple ascii format and this plug-in:

reads the file,

creates a GiD mesh with the read triangles and quadrilaterals,

and, if the information about the vertex normals is present, then this information is passed to GiD as nodal

vector results.

OFF: Object file format

This example is very similar to the previous one.

The off format is a very simple ascii format but including n-agons and color on vertices and faces. So, this plug-

in:

reads the file,

creates a GiD mesh with the read triangles and quadrilaterals and triangulates the read pentagons and

hexagons (and discards bigger n-agons),

if color information is present in the off file, which can be present on the nodes or on the elements, then this

information is passed to GiD as nodal or elemental results.

PLY: Polygon file format

This example is a little bit more complex.

Ply files can be ascii or binary, and the code of this plug-in is based in Greg Turk's code, developed in 1998, to

read ply files. This format allows the presence of several properties on nodes and faces, too. This plug-in:

reads the file,

creates a GiD mesh with the read lines, triangles and quadrilaterals,

if information about the vertex normals is found, then this information is passed to GiD as nodal vector results,

GiD v17

Copyright © 2024, GiD, CIMNE 291

all the properties defined in the ply file are passed to GiD. This properties can be defined on the nodes of on the

faces of the model, and so are they transferred to GiD.

Here the complexity also resides in the liberation of the reserved memory, which is wildly allocated in the ply

code.

PLY + Tcl : Polygon file format

This plug-in is the same as the previous PLY plug-in but a Tcl script is added inside the code to show a

progress bar in Tcl to keep the user entertained while big files are read.

GiD v17

Copyright © 2024, GiD, CIMNE 292

APPENDIX A (PRACTICAL EXAMPLES)

To learn how to configure GiD for a particular type of analysis, you can find some practical examples:

 By following the tutorial of the chapter Defining a problem type of the GiD user manual.

 By studing and modifing some existing Problem Types

Problem types included in GiD by default as example in $GID/problemtypes/Examples:

 cmas2d: This is the problem type created in the tutorial, which finds the distance of each element relative to

the center of masses of a two-dimensional surface. It uses the following files: .cnd, .mat, .prb, .bas, .tcl and .

bat. There is a help file inside directory cmas2d.gid called cmas2d.html

 cmas2d_customlib: The same problem type, but implemented using the 'CustomLib library'.

 cmas2d_customlib_wizard: The same problem type, but implemented using the GiD Smart Wizard

package, to generate a wizard GUI

 complex_example: uses some basic Tcl/Tk interaction (in complex_example.tcl) with GiD to:

 add a new menu in GiD's menu bar;

 create an icon bar for the problem type, with their own images;

 using conditions to evaluate user defined formulae at the nodes of the domain: look into

complex_example.cnd and complex_example.bas .

Other problemtypes can be downloaded from the Data->Problem type->Internet retrieve menu:

 Kratos: Multiphysics FEM open source C++ code.

 RamSeries: This is a problem type which performs the structural analysis of either beams or shells or a

combination of both using the Finite Element Method. This problem type uses the latest features offered by

GiD . The .exe file for Windows systems is also included in a limited version.

 Tdyn: Multiphysics solver (including CFD, heat transfer, species advection, pde solver and free surface

problems).

CompassFEM is a suite that includes both Tdyn and RamSeries codes

 NASTRAN: Static and dynamic interface for the NASTRAN commercial analysis program (not included)

For the full version without limitations check http://www.compassis.com.

http://www.compassis.com/

GiD v17

Copyright © 2024, GiD, CIMNE 293

APPENDIX B (classic problemtype system)

From version 13 of GiD, a new system of problem types has been developed, which offers several advantages

compared with the old (classic) system: it organizes better the data, provides with a more intuitive and user-

friendly GUI, enable more sophisticated integration tools, etc... From this version on, this 'classic' system of

problemtypes is considered deprecated, however, it is still supported by GiD.

GiD v17

Copyright © 2024, GiD, CIMNE 294

The classic problem type system uses the files .prb, .mat, .cnd, .uni to define general properties, materials,

conditions, units.

Each category of data is showed in a kind of window, and materials and conditions are associated to entities.

About writing the input file for the solver, the classical approach uses simple .bas GiD templates

PROBLEMTYPE 'CLASSIC'

The creation of a Problem Type involves the creation of a directory located inside the \problemtypes GiD folder,

with the name of the problem type and the extension .gid.

Note: now it is also possible to have a /problemtypes extra folder located at the <GiD user preferences folder>.

This is interesting in case that the user doesn't has privileges to copy a problemtype inside <GiD folder>

/problemtypes

Problemtypes that exists when GiD start will appear in its menu (see Problem type from Reference Manual).

The problemtype configuration files are a collection of files inside this subfolder. The name for most of them will

follow the format problem_type_name.xxx where the extension refers to their particular function.

Considering problem_type_name to be the name of the problem type and project_name the name of the

project, file configuration is described by the following diagram:

 Directory name: problem_type_name.gid

GiD v17

Copyright © 2024, GiD, CIMNE 295

 Directory location: c:\a\b\c\GiD_directory\problemtypes

Configuration files

 problem_type_name.xml XML-based configuration

 problem_type_name.cnd Conditions definitions

 problem_type_name.mat Materials properties

 problem_type_name.prb Problem and intervals data

 problem_type_name.uni Units Systems

 problem_type_name.sim Conditions symbols

 ***.geo Symbols geometrical definitions

 ***.geo Symbols geometrical definitions ...

 Template files

 problem_type_name.bas Information for the data input file

 ***.bas Information for additional files

 ***.bas Information for additional files ...

 Tcl extension files

 problem_type_name.tcl Extensions to GiD written in the Tcl/Tk programming language

 Command execution files

 problem_type_name.bat Operating system shell that executes the analysis process

The files problem_type_name.sim, ***.geo and ***.bas are not mandatory and can be added to facilitate

visualization (both kinds of file) or to prepare the data input for restart in additional files (just ***.bas files). In the

same way problem_type_name.xml is not necessary; it can be used to customize features such as: version info,

icon identification, password validation, etc.

CONFIGURATION FILES

These files generate the conditions and material properties, as well as the general problem and intervals data to

be transferred to the mesh, at the same time giving you the chance to define geometrical drawings or symbols

to represent some conditions on the screen.

Conditions file (.cnd)

Files with extension .cnd contain all the information about the conditions that can be applied to different entities.

The condition can adopt different field values for every entity. This type of information includes, for instance, all

the displacement constraints and applied loads in a structural problem or all the prescribed and initial

temperatures in a thermial analysis.

An important characteristic of the conditions is that they must define what kind of entity they are going to be

applied over, i.e. over points, over lines, over surfaces, over volumes, over layers or over groups, and what kind

of mesh entity they will be transferred over, i.e. over nodes, over face elements or over body elements.

 Over nodes This means that the condition will be transferred to the nodes contained in the geometrical

entity where the condition is assigned.

 Over face elements ?multiple? If this condition is applied to a line that is the boundary of a surface or to a

surface that is the boundary of a volume, this condition is transferred to the higher elements, marking the

GiD v17

Copyright © 2024, GiD, CIMNE 296

CONDITION: condition_name

CONDTYPE: 'over points', 'over lines', 'over surfaces', 'over volumes',

'over layers', 'over groups'

CONDMESHTYPE: 'over nodes', 'over face elements','over face elements

multiple', 'over body elements'

GROUPALLOW: points lines surfaces volumes nodes elements faces

QUESTION: field_name['#CB#'(...,optional_value_i,...)]

VALUE: default_field_value['#WIDTH#'(optional_entry_length)]

...

QUESTION: field_name['#CB#'(...,optional_value_i,...)]

VALUE: default_field_value['#WIDTH#'(optional_entry_length)]

END CONDITION

CONDITION: condition_name

...

END CONDITION

affected face. If it is declared as multiple, it can be transferred to more than one element face (if more than

one exists). By default it is considered as single, and only one element face will be marked.

 Over body elements If this condition is applied to lines, it will be transferred to line elements. If assigned to

surfaces, it will be transferred to surface elements. Likewise, if applied to volumes, it will be transferred to

volume elements.

Note: For backwards compatibility, the command 'over elements' is also accepted; this will transfer the

condition either to elements or to faces of higher level elements.Another important feature is that all the

conditions can be applied to different entities with different values for all the defined intervals of the problem.

Therefore, a condition can be considered as a list of fields containing the name of the particular condition, the

geometric entity over which it is applied, the mesh entity over which it will be transferred, its corresponding

properties and their values.

The format of the file is as follows:

Note: CONDTYPE and CONDMESHTYPE are compulsory, and only a kind of type must be set.

Note: GROUPALLOW is only valid for conditions 'over groups' , is an special optional field to restrict allowed

categories of enties of the group to the ones listed (if this field is missing then all kind of entities are allowed). A

list of multiple types could be set.

Note: #CB# means Combo Box.

Note: #WIDTH# means the size of the entry used by the user to enter the value of the condition. Specifies an

integer value indicating the desired width of the entry window, in average-size characters of the widget's font.

Local Axes

QUESTION: field_name['#LA#'('global','automatic','automatic alternative','automatic main')]

VALUE: default_field_value['#WIDTH#'(optional_entry_length)]

This type of field refers to the local axes system to be used. The position of the values indicates the kind of

local axes.

If it only has a single default value, this will be the name of the global axes.

GiD v17

Copyright © 2024, GiD, CIMNE 297

QUESTION: Local_Axes#LA#(Option automatic#A#,Option automatic_alt#L#)

VALUE: -Automatic-

If two values are given, the second one will reference a system that will be computed automatically for every

node and will depend on geometric constraints, like whether or not it is tangent, orthogonal, etc.

If a third value is given, it will be the name of the automatic alternative axes, which are the automatic axes

rotated 90 degrees.

If a fourth value is given, it will be the name of the automatic main axes, valid only for sufaces using the main

curvature directions. (note that sometimes main curvatures are not well defined, e.g. for a planar surface or a

sphere all directions are main directions, because the curvature is constant)

All the different user-defined systems will automatically be added to these default possibilities.

To enter only a specific kind of local axes it is possible to use the modifiers #G#,#A#,#L#,#M#.

 #G#: global axes;

 #A#: automatic axes;

 #L#: automatic alternative axes.

 #M#: main curvature axes

When using these modifiers the position of the values does not indicate the kind of local axes.

Example

Note: All the fields must be filled with words, where a word is considered as a string of characters without any

blank spaces. The strings signaled between quotes are literal and the ones inside brackets are optional. The

interface is case-sensitive, so any uppercase letters must be maintained. The default_field_value entry and

various optional_value_i entries can be alphanumeric, integers or reals. GiD treats them as alphanumeric until

the moment they are written to the solver input files.

Global axes:

X=1 0 0

Y=0 1 0

Z=0 0 1

Automatic axes:

For surfaces, this axes are calculated from the unitary normal N:

z'=N

if N is coincident with the global Y direction (Nx or Nz > some tolerance) then

x'=Y x N / |Y x N|

else

x'=Z x N / |Z x N|

y'=N x x'

z'=N

For lines, this axes are calculated from the unitary tangent T:

x'=T

if T is coincident with the global Z direction (Nx or Ny > some tolerance) then

y'=Y x x' / |Y x x'|

GiD v17

Copyright © 2024, GiD, CIMNE 298

else

y'=Z x x' / |Z x x'|

z'=x' x y'

Automatic alternative axes:

They are calculated like the automatic case and then swap x and y axes:

x''= y'

y''= - x'

z''= z'

For curves

x'=unitary tangent to the curve on the place where the condition is applied

If this tangent is different of the Z global axe=(0,0,1) then

y'=Y x x'

else

y'=Z x x'

z'=x' x y'

Note: the tangent x' is considered different of (0,0,1) is the first or second component is greater than 1/64

Main curvature axes:

They are calculated for surfaces finding on a point the directions where the curvatures are maximum and

minimum, but these directions are not always well defined.

e.g. in a planar point the curvature is zero in all directions, all directions could be seen as main directions, and in

a sphere the curvature is constant=1/Radius and it happen the same.

Multiple assign:

By default a condition can be applied only once to the same entity and last assignation replace previous one,

but this behavior can be changed:

One flag that can optionally be added to a condition is:

CANREPEAT: yes

It is written after CONDMESHTYPE and means that one condition can be assigned to the same entity several

times.

Self Calculated #FUNC# fields:

Another type of field that can be included inside a condition is a #FUNC# to do some calculation,

where the key #FUNC#, means that the value of this field will be calculated just when the mesh is generated. It

can be considered as a function that evaluates when meshing.

Valid variables for a #FUNC# field are:

 NumEntity: to track the numerical id of the geometric source entity

 x y z : to use the coordinates of the node or entity center where the condition is applied

 Cond(num_field,REAL): to use the value of other fields of this condition (REAL or INT declare that must be

considered as a real or a integer number)

 Valid mathematical operations are the same as the used for the *Operation template command.

e.g.

GiD v17

Copyright © 2024, GiD, CIMNE 299

CONDTYPE: over points

CONDMESHTYPE: over nodes

QUESTION: X_press#FUNC#(Cond(3,REAL)*(x-Cond(1,REAL))/ (Cond(2,REAL)-

Cond(1,REAL)))

VALUE: 0

CONDITION: Point-Constraints

In the above example, NumEntity is one of the possible variables of the function. It will be substituted by the

label of the geometrical entity from where the node or element is generated.

In this second example, the x variable is used, which means the x-coordinate of the node or of the center of the

element. Others fields of the condition can also be used in the function. Variables y and z give the y- and z-

coordinates of this point.

Note: There are other options available to expand the capabilities of the Conditions window (see Special fields).

Example: Creating the conditions file

Here is an example of how to create a conditions file, explained step by step:

 First, you have to create the folder or directory where all the problem type files are located,

problem_type_name.gid in this case.

 Then create and edit the file (problem_type_name.cnd in this example) inside the recently created directory

(where all your problem type files are located). As you can see, except for the extension, the names of the

file and the directory are the same.

 Create the first condition, which starts with the line:

The parameter is the name of the condition. A unique condition name is required for this conditions file.

 This first line is followed by the next pair:

which declare what entity the condition is going to be applied over. The first line, CONDTYPE:... refers to the

geometry, and may take as parameters the sentences "over points", "over lines", "over surfaces" or "over

volumes".

The second line refers to the type of condition applied to the mesh, once generated. GiD does not force you to

provide this second parameter, but if it is present, the treatment and evaluation of the problem will be more

acurate. The available parameters for this statement are "over nodes" and "over elements".

 Next, you have to declare a set of questions and values applied to this condition.

QUESTION: Surface_number#FUNC#(NumEntity)

VALUE: 0

GiD v17

Copyright © 2024, GiD, CIMNE 300

After the QUESTION: prompt, you have the choice of putting the following kinds of word:

 An alphanumeric field name.

 An alphanumeric field name followed by the #LA# statement, and then the single or double parameter.

 An alphanumeric field name followed by the #CB# statement, and then the optional values between

parentheses.

The VALUE: prompt must be followed by one of the optional values, if you have declared them in the previous

QUESTION: line. If you do not observe this format, the program may not work correctly.

In the previous example, the X-Force QUESTION takes the value 0.0. Also in the example, the X-Constraint

QUESTION includes a Combo Box statement (#CB#), followed by the declaration of the choices 1 and 0. In the

next line, the value takes the parameter 1. The X_axis QUESTION declares three items for the combo box:

DEFORMATION_XX,DEFORMATION_XY,DEFORMATION_XZ, with the value DEFORMATION_XX chosen.

Beware of leaving blank spaces between parameters. If in the first question you put the optional values (-

GLOBAL-, -AUTO-) (note the blank space after the comma) there will be an error when reading the file. Take

special care in the Combo Box question parameters, so as to avoid unpredictable parameters.

 The conditions defined in the .cnd file can be managed in the Conditions window (found in the Data menu) in

the Preprocessing component of GiD.

QUESTION: Local-Axes#LA#(-GLOBAL-)

VALUE: -GLOBAL-

QUESTION: X-Force

VALUE: 0.0

QUESTION: X-Constraint:#CB#(1,0)

VALUE: 1

QUESTION: X_axis:#CB#(DEFORMATION_XX,DEFORMATION_XY,DEFORMATION_XZ)

VALUE: DEFORMATION_XX

END CONDITION

GiD v17

Copyright © 2024, GiD, CIMNE 301

PROBLEM DATA

QUESTION: field_name['#CB#'(...,optional_value_i,...)]

VALUE: default_field_value

...

QUESTION: field_name['#CB#'(...,optional_value_i,...)]

VALUE: default_field_value

END PROBLEM DATA

INTERVAL DATA

QUESTION: field_name['#CB#'(...,optional_value_i,...)]

VALUE: default_field_value

...

QUESTION: field_name['#CB#'(...,optional_value_i,...)]

VALUE: default_field_value

END INTERVAL DATA

Problem and intervals data file (.prb)

Files with the extension .prb contain all the information about general problem and intervals data. The general

problem data is all the information required for performing the analysis and it does not concern any particular

geometrical entity. This differs from the previous definitions of conditions and materials properties, which are

assigned to different entities. An example of general problem data is the type of solution algorithm used by the

solver, the value of the various time steps, convergence conditions, etc.

Within this data, one may consider the definition of specific problem data (for the whole process) and intervals

data (variable values along the different solution intervals). An interval would be the subdivision of a general

problem that contains its own particular data. Typically, one can define a different load case for every interval or,

in dynamic problems, not only variable loads, but also variation in time steps, convergence conditions and so on.

The format of the file is as follows:

GiD v17

Copyright © 2024, GiD, CIMNE 302

PROBLEM DATA

QUESTION: Unit_System#CB#(SI,CGS,User)

VALUE: SI

QUESTION: Title

VALUE: Default_title

END PROBLEM DATA

PROBLEM DATA

QUESTION: Unit_System#CB#(SI,CGS,User)

VALUE: SI

QUESTION: Title

VALUE: Default_title

END PROBLEM DATA

All the fields must be filled with words, where a word is considered as a string of characters without any blank

spaces. The strings signaled between quotes are literal and the ones inside brackets are optional. The interface

is case-sensitive, so any uppercase letters must be maintained. The default_field_value entry and various

optional_value_i entries can be alphanumeric, integers or real numbers, depending on the type.

Note: There are other options available to expand the capabilities of the Problem Data window (see Special

fields).

Example: Creating the PRB data file

Here is an example of how to create a problem data file, explained step by step:

 Create and edit the file (problem_type_name.prb in this example) inside the problem_type_name directory

(where all your problem type files are located). Except for the extension, the names of the file and the

directory must be the same.

 Start the file with the line:

Then add the following lines:

The first question defines a combo style menu called Unit_System, which has the SI option selected by default.

The second question defines a text field called Title, and its default value is Default_title.

 To end the file, add the following line:

The whole file is as follows:

The options defined in the .prb file can be managed in the Problem Data window (found in the Data menu) in

the Preprocessing component of GiD.

GiD v17

Copyright © 2024, GiD, CIMNE 303

MATERIAL: material_name

QUESTION: field_name['#CB#'(...,optional_value_i,...)]

VALUE: default_field_value

...

QUESTION: field_name['#CB#'(...,optional_value_i,...)]

VALUE: default_field_value

END MATERIAL

MATERIAL: material_name

...

END MATERIAL

Materials file (.mat)

Files with the extension .mat include the definition of different materials through their properties. These are base

materials as they can be used as templates during the Preprocessing step for the creation of newer ones.

You can define as many materials as you wish, with a variable number of fields. None of the unused materials

will be taken into consideration when writing the data input files for the solver. Alternatively, they can be useful

for generating a materials library.

Conversely to the case of conditions, the same material can be assigned to different levels of geometrical entity

(lines, surfaces or volumes) and can even be assigned directly to the mesh elements.

In a similar way to how a condition is defined, a material can be considered as a group of fields containing its

name, its corresponding properties and their values.

The format of the file is as follows:

All the fields must be filled with words, where a word is considered as a string of characters without any blank

spaces. The strings signaled between quotes are literal and the ones within brackets are optional. The interface

is case-sensitive, so any uppercase letters must be maintained. The default_field_value entry and various

optional_value_i entries can be alphanumeric, integers or real numbers, depending on their type.

Note: There are other options available to expand the capabilities of the Materials window (see Special fields).

GiD v17

Copyright © 2024, GiD, CIMNE 304

END MATERIAL

MATERIAL: Air

QUESTION: Density

VALUE: 1.01

END MATERIAL

MATERIAL: AISI_4340_Steel

QUESTION: YOUNG_(Ex)

VALUE: 21E+9

QUESTION: SHEAR_MODUL

VALUE: 8.07E+9

QUESTION: POISSON_(NUXY)

VALUE: 0.3

QUESTION: ALPX

VALUE: 0.0000066

QUESTION: DENSITY_(DENS)

VALUE: 0.785

END MATERIAL

MATERIAL: Concrete

QUESTION: Density

VALUE: 2350

END MATERIAL

MATERIAL: Air

QUESTION: Density

VALUE: 1.0

Example: Creating the materials file

Here is an example of how to create a materials file, explained step by step:

 Create and edit the file (problem_type_name.mat in this example) inside the problem_type_name directory

(where all your problem type files are located). As you can see, except for the extension, the names of the

file and the directory are the same.

 Create the first material, which starts with the line:

The parameter is the arbitrary name of the material. A unique material name is required for this into this

materials file (do not use blank spaces in the name of the material).

 The next two lines define a property of the material and its default value:

You can add as many properties as you wish. To end the material definition, add the following line:

In this example we have introduced some materials; the .mat file would be as follows:

GiD v17

Copyright © 2024, GiD, CIMNE 305

QUESTION: field_name(column_title_1,...,column_title_n)

VALUE: #N# number_of_values value_1 ... value_m

The materials defined in the .mat file can be managed in the Materials window (found in the Data menu) in

the Preprocessing component of GiD.

Special fields

 Array fields

Fields of conditions, problem data or materials could store an array of values, and the length of this array is not

predefined, could be set at runtime.

For example, if a material has a variable property (an example would be where a property was dependent on

temperature and was defined with several values for several temperatures) a table of changing values may be

declared for this property. When the solver evaluates the problem, it reads the values and applies a suitable

property value.

The declaration of the table requires two lines of text:

The first is a QUESTION line with a list of alphanumeric values between parentheses.

These values are the names of each of the columns in the table so that the number of values declared is the

number of columns.

This first line is followed by another with the default data values. It starts with the words VALUE: #N#, and is

followed by a number that indicates the quantity of elements in the matrix and, finally, the list of values.

GiD v17

Copyright © 2024, GiD, CIMNE 306

MATERIAL: Steel

QUESTION: TypeId

VALUE: Metal

STATE: Hidden

QUESTION: Internal_Points(X,Y,Z)

VALUE: #N# 3 0.0 0.0 0.0

HELP: Internal points coordinates

END MATERIAL

*loop materials

*if(strcmp(Matprop(TypeId),"Metal")==0)

*set var N=Matprop(Internal_Points,int)

X Y Z

*for(i=1;i<=N;i=i+3)

*Matprop(Internal_Points,*i) *Matprop(Internal_Points,*operation(i+1))

*Matprop(Internal_Points,*operation(i+2))

*end for

*endif

*end materials

BOOK: Steels

...

All steels come here

...

BOOK: Concretes

The number of values m declared for the matrix obviously has to be the number of columns n multiplied by the

number of rows to be filled.

e.g.

and example writing the values of this material from the .bas template: TEMPLATE FILES

Note that in the example a hidden field named 'TypeId' is used to identify this and its derived materials.

 Aesthetic fields:

These fields are useful for organizing the information within data files. They make the information shown in the

data windows more readable. In this way you can better concentrate on the data properties relevant to the

current context.

 Book: With the Book field it is possible to split the data windows into other windows. For example, we

can have two windows for the materials, one for the steels and another for the concretes:

GiD v17

Copyright © 2024, GiD, CIMNE 307

TITLE: Basic

...

Basics properties

....

TITLE: Advanced

...

Advanced properties

....

The same applies to conditions. For general and interval data the book field groups a set of properties.

Title: The Title field groups a set of properties on different tabs of one book. All properties appearing

after this field will be included on this tab.

...

All concretes come here

...

GiD v17

Copyright © 2024, GiD, CIMNE 308

QUESTION: X-Constraint#CB#(1,0)

VALUE: 1

HELP: If this flag is set, movement is forbidden along X axis

IMAGE: young.png

Help: With the Help field it is possible to assign a description to the data property preceding it. In this

way you can inspect the meaning of the property through the help context function by holding the cursor

over the property or by right-clicking on it.

Image: The Image field is useful for inserting descriptive pictures in the data window. The value of this

field is the file name of the picture relating to the problem type location.

GiD v17

Copyright © 2024, GiD, CIMNE 309

....

QUESTION: Normal_pressure#UNITS#

VALUE: 0.0Pa

...

Unit field: With this feature it is possible to define and work with properties that have units. GiD is

responsible for the conversion between units of the same magnitude

GiD v17

Copyright © 2024, GiD, CIMNE 310

DEPENDENCIES <V1>,[TITLESTATE,<Title>,<State>],<A1>,<P1>,<NV1>,...,

<An>,<Pn>,<NVn>) ... (<Vm>,<Am>,<Pm>,<NVm>,...)

QUESTION: Some_check#CB#(1,0)

VALUE: 0

DEPENDENCIES: (0,HIDE,Type,#CURRENT#)

DEPENDENCIES: (1,RESTORE,Type,#CURRENT#)

QUESTION: Type#CB#(OPTION_1,OPTION_2)

VALUE: OPTION_1

...

TITLE: General

QUESTION: Type_of_Analysis:#CB#(FILLING,SOLIDIFICATION)

VALUE: SOLIDIFICATION

DEPENDENCIES: (FILLING,TITLESTATE,Filling-Strategy,normal,RESTORE,

Filling_Analysis,GRAVITY,HIDE,Solidification_Analysis,#CURRENT#)

Dependencies: Depending on the value, we can define some behavior associated with the property. For

each value we can have a list of actions. The syntax is as follows:

where:

 <Vi> is the value that triggers the actions. A special value is #DEFAULT#, which refers to all the

values not listed.

 [TITLESTATE,<Title>,<State>] this argument is optional. Titlestate should be used to show or hide

book labels. Many Titlestate entries can be given. <Title> is the title defined for a book (TITLE: Title).

State is the visualization mode: normal or hidden.

 <Ai> is the action and can have one of these values: SET,DISABLE, HIDE, RESTORE. All these

actions change the value of the property with the following differences:

SET assign the value, triggering its dependencies

DISABLE disables the property

HIDE hides the property

RESTORE brings the property to the enabled and visible state.

Note: SET will trigger its dependencies always, also if #CURRENT# value is used. DISABLE, HIDE and

RESTORE usually maintain #CURRENT# value, but if other value is used really is like do also a SET and

dependencies will be triggered also.

 <Pi> is the name of the property to be modified.

 <NVi> is the new value of <Pi>. A special value is #CURRENT#, which refers to the current value of

<Pi>.

Example, when Some_check is 0 the next field Type is hidden.

Example with titlestate:

GiD v17

Copyright © 2024, GiD, CIMNE 311

DEPENDENCIES: (SOLIDIFICATION,TITLESTATE,Filling-Strategy,hidden,HIDE,

Filling_Analysis,#CURRENT#,RESTORE,Solidification_Analysis,#CURRENT#)

TITLE: Filling-Strategy

QUESTION: Filling_Analysis:#CB#(GRAVITY,LOW-PRESSURE,FLOW-RATE)

VALUE: GRAVITY

QUESTION: Solidification_Analysis:#CB#(THERMAL,THERMO-MECHANICAL)

VALUE: THERMAL

...

...

QUESTION: Elastic modulus XX axis

VALUE: 2.1E+11

STATE: HIDDEN

...

QUESTION:Composition_Material#MAT#(BaseMat)

VALUE:AISI_4340_STEEL

...

QUESTION: your_question

VALUE: your_layername

TKWIDGET: GidUtils::TkwidgetGetLayername

State: Defines the state of a field; this state can be: disabled, enabled or hidden. Here is an example:

#MAT#('BookName'): Defines the field as a material, to be selected from the list of materials in the book

'BookName'. Here is an example:

 TKWIDGET: TkWidget

The Tkwidged special field mechanism allow to customize with Tcl scripting language condition or material

fields.

some Tcl procedures are predefined in dev_kit.tcl to be used for common cases, like show current layers,

materials, pick a point or node, or select a filename.

 Layer field:

Declare in the tkwidget field to use the Tcl procedureGidUtils::TkwidgetGetLayername, e.g:

 Material field:

Declare in the tkwidget field to use the Tcl GidUtils::TkwidgetGetMaterialname e.g:

GiD v17

Copyright © 2024, GiD, CIMNE 312

...

QUESTION: your_question

VALUE: your_materialname

TKWIDGET: GidUtils::TkwidgetGetMaterialname

...

QUESTION: your_question

VALUE: your_node_id

TKWIDGET: GidUtils::TkwidgetPickPointOrNode

...

QUESTION: your_question

VALUE: your_filename

TKWIDGET: GidUtils::TkwidgetGetFilenameButton

...

QUESTION: your_question

VALUE: your_folder

TKWIDGET: GidUtils::TkwidgetGetDirectoryButton

...

QUESTION: your_question

VALUE: vx vy vz

TKWIDGET: GidUtils::TkwidgetGetVector3D

 Pick point or node field

Declare in the tkwidget field to use the Tcl procedure GidUtils::TkwidgetPickPointOrNode , e.g.

 Select filename field

Declare in the tkwidget field to use the Tcl procedure GidUtils::TkwidgetGetFilenameButton , e.g.

 Select directory field

Declare in the tkwidget field to use the Tcl procedure GidUtils::TkwidgetGetDirectoryButton , e.g.

 Vector field

To pack in a single line the three components of a vector, internally stored in the same question as a list of three

real numbers, e.g.

GiD v17

Copyright © 2024, GiD, CIMNE 313

...

QUESTION: your_question

VALUE: your_value

TKWIDGET: GidUtils::TkwidgetText

...

QUESTION: your_question

VALUE: your_value

TKWIDGET: GidUtils::TkwidgetEntry CONFIGURE {-width 20}

BEGIN TABLE

LENGTH : m, 100 cm, 1e+3 mm

...

STRENGTH : kg*m/s^2, N, 1.0e-1 kp

END

BEGIN SYSTEM(INTERNATIONAL)

LENGTH : m

MASS : kg

STRENGTH : N

...

TEMPERATURE : Cel

END

USER DEFINED: ENABLED

 Text widget instead of entry widget

To replace the standard single-line entry widget with a multi-line text widget.

 Configure the entry field widget

procedure to change some configuration of the ttk::entry widget. GidUtils::TkwidgetEntry CONFIGURE {-

<option> <value>}

Unit System file (.uni)

When GiD is installed, the file units.gid is copied within the GiD directory. In this file a table of magnitudes is

defined. For each magnitude there is a set of units and a conversion factor between the unit and the reference

unit. The units systems are also defined. A unit system is a set of magnitudes and the corresponding unit.

The syntax of the unit file (problem_type_name.uni) within the problem type is similar. It can include the line:

(or DISABLED)

meaning that the user is able (or not able) to define his own system unit within the project. If the line does not

GiD v17

Copyright © 2024, GiD, CIMNE 314

MODEL: km

PROBLEM: USER DEFINED

BEGIN SYSTEM

LENGTH: m

PRESSURE: Pa

MASS: kg

STRENGTH: N

END

USE BASE SYSTEMS: DISABLED

HIDDEN: strength, pressure

BEGIN SYSTEM

...

END

appear in the file the value is assumed to be ENABLED.

It is possible to ignore all units systems defined by default inside the file units.gid:

(or ENABLED)

With the command HIDDEN: 'magnitude', 'magnitude' certain magnitudes will not be displayed in the Problem

units window.

If the problem type uses a property which has a unit, then GiD creates the file project_name.uni in the project

directory. This file includes the information related to the unit used in the geometric model and the unit system

used. The structure of this file is:

In this file, MODEL refers to the unit of the geometric and mesh model of preprecess and PROBLEM is the

name of the units system used by GiD to convert all the data properties in the output to the solver. If this name

is USER DEFINED, then the system is the one defined within the file. The block

corresponds to the user-defined system.

GiD v17

Copyright © 2024, GiD, CIMNE 315

proc GiD_Event_InitProblemtype { dir } {

My_On_AfterChangeModelUnitSystem [GiD_Units get system]

}

proc GiD_Event_AfterChangeModelUnitSystem { old_unit_system

new_unit_system } {

My_On_AfterChangeModelUnitSystem $new_unit_system

}

proc My_On_AfterChangeModelUnitSystem { new_unit_system } {

if { $new_unit_system == "IMPERIAL" } {

Units::SetUnitsDisallowed {m cm mm Mm km kg ton kton N kp kN MN

Nm kNm MNm Pa kPa MPa GPa}

} elseif { [string range $new_unit_system 0 8] == "INTERNATIONAL" } {

Units::SetUnitsDisallowed {in Mi miles ft lb lbf kip lbfft lbfin

psi ksi Gal}

} else {

W "unexpected unit system $new_unit_system"

}

}

Unit system: It is possible to define more than one 'unit system'. When the user select a unit system it mean

than when writing to the calculation file the fields with units (material properties, conditions, general data, model

length) they will be written converted to the reference unit of this magnitude for the selected unit system.

Hide some units depending on unit system:

The tcl procedure Units::SetUnitsDisallowed allow to specify a list of units to be disallowed (not used in

graphical windows)

proc Units::SetUnitsDisallowed { basic_units_to_disallow }

example

GiD v17

Copyright © 2024, GiD, CIMNE 316

cond Point-Constraints

3

global

cond(int,5)

1

0

0

Support3D.geo

global

cond(int,1) && cond(int,3)

1

0

0

Support.geo

global

cond(int,1) || cond(int,3)

cond(int,3)

cond(int,1)*(-1)

0

Support-2D.geo

Conditions symbols file (.sim)

Files with the extension .sim comprise different symbols to represent some conditions during the preprocessing

stage. You can define these symbols by creating ad hoc geometrical drawings and the appropriate symbol will

appear over the entity with the applied condition every time you ask for it.

One or more symbols can be defined for every condition and the selection will depend on the specified values in

the file, which may be obtained through mathematical conditions.

The spatial orientation can also be defined in this file, depending on the values taken by the required data. For

global definitions, you have to input the three components of a vector to express its spatial direction. GiD takes

these values from the corresponding conditions window. The orientation of the vector can be understood as the

rotation from the vector (1,0,0) towards the new vector defined in the file.

For line and surface conditions, the symbols may be considered as local. In this case, GiD does not consider

the defined spatial orientation vector and it takes its values from the line or surface orientation. The orientation

assumes the vector (1,0,0) to be the corresponding entity's normal.

These components, making reference to the values obtained from the adequate conditions, may include C-

language expressions. They express the different field values of the mentioned condition as cond(type,i), where

type (real or int) refers to the type of variable (not case-sensitive) and i is the number of the field for that

particular condition.

Example: Creating the Symbols file

Here is an example of how to create a symbols file. Create and edit the file (problem_type_name.sim in this

example) inside the problem_type_name directory (where all your problem type files are located). Except for the

extension, the names of the file and the directory must be the same.

The contents of the problem_type_name.sim example should be the following:

GiD v17

Copyright © 2024, GiD, CIMNE 317

This is a particular example of the .sim file where four different symbols have been defined. Each one is read

from a ***.geo file. There is no indication of how many symbols are implemented overall. GiD simply reads the

whole file from beginning to end.

The ***.geo files are obtained through GiD. You can design a particular drawing to symbolize a condition and

this drawing will be stored as problem_name.geo when saving this project as problem_name.gid. You do not

need to be concerned about the size of the symbol, but should bear in mind that the origin corresponds to the

point (0,0,0) and the reference vector is (1,0,0). Subsequently, when these ***.geo files are invoked from

problem_type_name.sim, the symbol drawing appears scaled on the display at the entity's location.

Nevertheless, the number of symbols and, consequently, the number of ***.geo files can vary from one

condition to another. In the previous example, for instance, the condition called Point-Constraints, which is

defined by using cond, comprises three different symbols. GiD knows this from the number 3 written below the

condition's name. Next, GiD looks to see if the orientation is relative to the spatial axes (global) or moves

together with its entity (local). In the example, the three symbols concerning point constraints are globally

oriented.

Imagine that this condition has six fields. The first, third and fifth field values express if any constraint exist along

the X-axis, the Y-axis and the Z-axis, respectively. These values are integers and in the case that they are null,

the degree of freedom in question is assumed to be unconstrained.

For the first symbol, obtained from the file Support3D.geo, GiD reads cond(int,5), or the Z-constraint. If it is

false, which means that the value of the field is zero, the C-condition will not be satisfied and GiD will not draw

it. Otherwise, the C-condition will be satisfied and the symbol will be invoked. When this occurs, GiD skips the

rest of the symbols related to this condition. Its orientation will be the same as the original drawing because the

spatial vector is (1,0,0).

All these considerations are valid for the second symbol, obtained from the file Support.geo, but now GiD has to

check that both constraints (&&) - the X-constraint and the Y-constraint - are fixed (their values are not zero).

For the third symbol, obtained from the file Support-2D.geo, only one of them has to be fixed (||) and the

orientation of the symbol will depend on which one is free and which one is fixed, showing on the screen the

corresponding direction for both degrees of freedom.

Finally, for the fourth symbol, onbtained from the file Normal.geo, it can be observed that the drawing of the

symbol, related to the local orientation will appear scaled according to the real-type values of the second, fourth

and sixth field values. Different types of C-language expressions are available in GiD. Thus, the last expression

would be equivalent to entering '(fabs(cond(real,2))>0. || fabs(cond(real,4))!=0. || fabs(cond(real,6))>1e-10)'.

Note: As previously mentioned, GiD internally creates a project_name.geo file when saving a project, where it

cond Face-Load

1

local

fabs(cond(real,2)) + fabs(cond(real,4)) + fabs(cond(real,6))>0.

cond(real,2)

cond(real,4)

cond(real,6)

Normal.geo

GiD v17

Copyright © 2024, GiD, CIMNE 318

keeps all the information about the geometry in binary format. In fact, this is the reason why the extension of

these files is .geo. However, the file project_name.geo is stored in the project_name.gid directory, whereas

these user-created ***.geo files are stored in the problem_type_name.gid directory.

Template files

Once you have generated the mesh, and assigned the conditions and the materials properties, as well as the

general problem and intervals data for the solver, it is necessary to produce the data input files to be processed

by that program.

To manage this reading, GiD is able to interpret a file called problem_type_name.bas (where

problem_type_name is the name of the working directory of the problem type without the .bas extension).

This file (template file) describes the format and structure of the required data input file for the solver that is

used for a particular case. This file must remain in the problem_type_name.gid directory, as well as the other

files already described - problem_type_name.cnd, problem_type_name.mat, problem_type_name.prb and also

problem_type_name.sim and ***.geo, if desired.

In the case that more than one data input file is needed, GiD allows the creation of more files by means of

additional ***.bas files (note that while problem_type_name.bas creates a data input file named project_name.

dat, successive ***.bas files - where *** can be any name - create files with the names project_name-1.dat,

project_name-2.dat, and so on). The new files follow the same rules as the ones explained next for

problem_type_name.bas files.

These files work as an interface from GiD's standard results to the specific data input for any individual solver

module. This means that the process of running the analysis simply forms another step that can be completed

within the system.

In the event of an error in the preparation of the data input files, the programmer has only to fix the

corresponding problem_type_name.bas or ***.bas file and rerun the example, without needing to leave GiD,

recompile or reassign any data or re-mesh.

This facility is due to the structure of the template files. They are a group of macros (like an ordinary

programming language) that can be read, without the need of a compiler, every time the corresponding analysis

file is to be written. This ensures a fast way to debug mistakes.

Commands used in the .bas file

List of bas commands: (all these commands must be prefixed by a character *)

Add

GiD v17

Copyright © 2024, GiD, CIMNE 319

Break

Clock Cond CondElemFace CondHasLocalAxes CondName CondNumEntities CondNumFields

ElemsCenter ElemsConec ElemsLayerName ElemsLayerNum ElemsMat ElemsMatProp ElemsNnode

ElemsNnodeCurt ElemsNNodeFace ElemsNNodeFaceCurt ElemsNormal ElemsNum ElemsRadius ElemsType

ElemsTypeName Else ElseIf End Endif

FaceElemsNum FaceIndex FactorUnit FileId For Format

GenData GlobalNodes GroupColorRGB GroupFullName GroupName GroupNum GroupNumEntities

GroupParentName GroupParentNum

If Include IntFormat IntvData IsQuadratic

LayerColorRGB LayerName LayerNum LayerNumEntities LocalAxesDef LocalAxesDefCenter LocalAxesNum

LocalNodes Loop LoopVar

MaterialLocalNum MatNum MatProp MessageBox

Ndime Nelem Nintervals NLocalAxes Nmats Nnode NodesCoord NodesLayerName NodesLayerNum

NodesNum Npoin

Operation

RealFormat Remove

Set SetFormatForceWidth SetFormatStandard

Tcl Time

Units

WarningBox

Single value return commands

When writing a command, it is generally not case-sensitive (unless explicitly mentioned), and even a mixture of

uppercase and lowercase will not affect the results.

 *npoin, *ndime, *nnode, *nelem, *nmats, *nintervals. These return, respectively, the number of points, the

dimensions of the project being considered, the number of nodes of the element with the highest number,

the number of elements, the number of materials and the number of data intervals. All of them are

considered as integers and do not carry arguments (see *format,*intformat), except *nelem, which can bring

different types of elements. These elements are: Point, Linear, Triangle, Quadrilateral, Tetrahedra,

GiD v17

Copyright © 2024, GiD, CIMNE 320

*set var i_material=3

*MaterialLocalNum(*i_material)

*MaterialLocalNum(Steel)

*loop elements

*elemsnum *elemsmat *elemsmatprop(young)

*end elements

Hexahedra, Prism, Pyramid, Sphere, depending on the number of edges the element has, and All, which

comprises all the possible types. The command *nmats returns the number of materials effectively assigned

to an entity, not all the defined ones.

 *GenData. This must carry an argument of integer type that specifies the number of the field to be printed.

This number is the order of the field inside the general data list. This must be one of the values that are fixed

for the whole problem, independently of the interval (see Problem and intervals data file (.prb)). The name of

the field, or an abreviation of it, can also be the argument instead. The arguments REAL or INT, to express

the type of number for the field, are also available (see *format,*intformat,*realformat,*if). If they are not

specified, the program will print a character string. It is mandatory to write one of them within an expression,

except for strcmp and strcasecmp. The numeration must start with the number 1.

Note: Using this command without any argument will print all fields

 *IntvData. The only difference between this and the previous command is that the field must be one of those

fields varying with the interval (see Problem and intervals data file (.prb)). This command must be within a

loop over intervals (see *loop) and the program will automatically update the suitable value for each iteration.

Note: Using this command without any argument will print all fields

 *MatProp. This is the same as the previous command except that it must be within a loop over the materials

(see *loop). It returns the property whose field number or name is defined by its argument. It is

recommended to use names instead of field numbers.

If the argument is 0, it returns the material's name.

Note: Using this command without any argument will print all fields

Caution: If there are materials with different numbers of fields, you must ensure not to print non-existent fields

using conditionals.

 MaterialLocalNum To get the local material number from its global id or its name.

The local material id is the material number for the calculation file, taking into account the materials applied to

mesh elements)

It has a single argument, an integer of the material global number or its name.

Example:

 *ElemsMatProp. This is the same as Matprop but uses the material of the current element. It must be within

a loop over the elements (see *loop). It returns the property whose field number or name is defined by its

argument. It is recommended to use names instead of field numbers.

Example:

GiD v17

Copyright © 2024, GiD, CIMNE 321

*loop layers

*LayerName *LayerColorRGB

*Operation(LayerColorRGB(1)/255.0) *Operation(LayerColorRGB(2)/255.0)

*Operation(LayerColorRGB(3)/255.0)

*end layers

 *Cond. The same remarks apply here, although now you have to notify with the command *set (see *set)

which is the condition being processed. It can be within a loop (see *loop) over the different intervals should

the conditions vary for each interval.

Note: Using this command without any argument will print all fields

 *CondName. This returns the conditions's name. It must be used in a loop over conditions or after a *set

cond command.

 *CondNumFields. This returns the number of fields of the current condition. It must be used in a loop over

conditions or after *set cond

 *CondHasLocalAxes. returns 1 if the condition has a local axis field, 0 else

 *CondNumEntities. You must have previously selected a condition (see *set cond). This returns the

number of entities that have a condition assigned over them.

 *ElemsNum: This returns the element's number.

*NodesNum: This returns the node's number.

*MatNum: This returns the material's number.

*ElemsMat: This returns the number of the material assigned to the element.

All of these commands must be within a proper loop (see *loop) and change automatically for each

iteration. They are considered as integers and cannot carry any argument. The number of materials will be

reordered numerically, beginning with number 1 and increasing up to the number of materials assigned to

any entity.

 *FaceElemsNum: must be inside a *loop faces, and print the element's number owner of the face

 *FaceIndex: must be inside a *loop faces, and print the face index on the element (starting from 1)

 *LayerNum: This returns the layer's number.

*LayerName: This returns the layer's name.

*LayerColorRGB: This returns the layer's color in RGB (three integer numbers between 0 and 256). If

parameter (1), (2) or (3) is specified, the command returns only the value of one color. RED is 1, GREEN is

2 and BLUE is 3.

The commands *LayerName, *LayerNum and *LayerColorRGB must be inside a loop over layers; you

cannot use these commands in a loop over nodes or elements.

Example:

*NodesLayerNum: This returns the layer's number. It must be used in a loop over nodes.

*NodesLayerName: This returns the layer's name. It must be used in a loop over nodes.

*ElemsLayerNum: This returns the layer's number. It must be used in a loop over elems.

*ElemsLayerName: This returns the layer's name. It must be used in a loop over elems.

*LayerNumEntities. You must have previously selected a layer (see *set layer). This returns the number of

entities that are inside this layer.

*GroupNum: This returns the group's index number.

GiD v17

Copyright © 2024, GiD, CIMNE 322

*loop groups

*groupnum "*GroupFullName" ("*groupname" parent:*groupparentnum)

*groupcolorrgb

*set group *GroupName *nodes

*if(GroupNumEntities)

nodes: *GroupNumEntities

*loop nodes *onlyingroup

*nodesnum

*end nodes

*end if

*set group *GroupName *elems

*if(GroupNumEntities)

elements: *GroupNumEntities

*loop elems *onlyingroup

*elemsnum

*end elems

*end if

*set group *GroupName *faces

*if(GroupNumEntities)

faces: *GroupNumEntities

*loop faces *onlyingroup

*faceelemsnum:*faceindex

*end faces

*end if

*end groups

*GroupFullName: This returns the full group's name, including parents separed by //. e.g: a//b//c

*GroupName: This returns only the tail group's name. e.g: c (if group's doesn't has parent then is the

same as the full name)

*GroupColorRGB: This returns the group's color in RGB (three integer numbers between 0 and 256). If

parameter (1), (2) or (3) is specified, the command returns only the value of one color. RED is 1, GREEN is

2 and BLUE is 3.

*GroupParentName: This returns the name of the parent of the current group

*GroupParentNum: This returns the index of the parent of the current group

These commands must be inside a loop over groups, or after set group.

Example:

*GroupNumEntities. You must have previously selected a group (see *set group). This returns the number

of entities that are inside this group.

*LoopVar. This command must be inside a loop and it returns, as an integer, what is considered to be the

internal variable of the loop. This variable takes the value 1 in the first iteration and increases by one unit for

each new iteration. The parameter elems,nodes,materials,intervals, used as an argument for the

corresponding loop, allows the program to know which one is being processed. Otherwise, if there are

nested loops, the program takes the value of the inner loop.

GiD v17

Copyright © 2024, GiD, CIMNE 323

*operation(4*elemsnum+1)

*operation(8(loopvar-1)+1)

 *Operation. This returns the result of an arithmetical expression what should be written inside parentheses

immediately after the command. This operation must be defined in C-format and can contain any of the

commands that return one single value. You can force an integer or a real number to be returned by means

of the parameters INT or REAL. Otherwise, GiD returns the type according to the result.

The valid C-functions that can be used are:

+,-,*,/,%,(,),=,<,>,!,&,|, numbers and variables

sin

cos

tan

asin

acos

atan

 atan2

 exp

 fabs

 abs

 pow

 sqrt

 log

 log10

 max

 min

 strcmp

 strcasecmp

The following are valid examples of operations:

Note: There cannot be blank spaces between the commands and the parentheses that include the parameters.

Note: Commands inside *operation do not need * at the beginning.

 *LocalAxesNum. This returns the identification name of the local axes system, either when the loop is over

the nodes or when it is over the elements, under a referenced condition.

 *nlocalaxes. This returns the number of the defined local axes system.

 *IsQuadratic. This returns the value 1 when the elements are quadratic or 0 when they are not.

 *Time. This returns the number of seconds elapsed since midnight.

 *Clock. This returns the number of clock ticks (aprox. milliseconds) of elapsed processor time.

Example:

*set var t0=clock

*loop nodes

*nodescoord

*end nodes

*set var t1=clock

ellapsed time=*operation((t1-t0)/1000.0) seconds

GiD v17

Copyright © 2024, GiD, CIMNE 324

*Units(LENGTH)

*FactorUnit(PRESSURE)

Coordinates:

Node X Y

*loop nodes

 *Units('magnitude'). This returns the current unit name for the selected magnitude (the current unit is the

unit shown inside the unit window).

Example:

 *FactorUnit('unit'). This returns the numeric factor to convert a magnitude from the selected unit to the

basic unit.

Example:

 *FileId returns a long integer representing the calculaton file, written following the current template.

This value must be used to provide the channel of the calculation file to a tcl procedure to directly print data with

the GiD_File fprintf special Tcl command.

Multiple values return commands

These commands return more than one value in a prescribed order, writing them one after the other.

All of them except LocalAxesDef are able to return one single value when a numerical argument giving the

order of the value is added to the command. In this way, these commands can appear within an expression.

Neither LocalAxesDef nor the rest of the commands without the numerical argument can be used inside

expressions.

*NodesCoord

*NodesCoord

This command writes the node's coordinates. It must be inside a loop (see *loop) over the nodes or elements.

The coordinates are considered as real numbers (see *realformat and *format). It will write two or three

coordinates according to the number of dimensions the problem has (see *Ndime).

If *NodesCoord receives an integer argument (from 1 to 3) inside a loop of nodes, this argument indicates which

coordinate must be written: x, y or z. Inside a loop of nodes:

*NodesCoord writes three or two coordinates depending on how many dimensions there are.

*NodesCoord(1) writes the x coordinate of the actual node of the loop.

*NodesCoord(2) writes the y coordinate of the actual node of the loop.

*NodesCoord(3) writes the z coordinate of the actual node of the loop.

If the argument real is given, the coordinates will be treated as real numbers.

Example: using *NodesCoord inside a loop of nodes

GiD v17

Copyright © 2024, GiD, CIMNE 325

Coordinates:

*loop elems

all conenctivities: *elemsconec

first connectivity *elemsconec

(1)

*end elems

This command effects a rundown of all the nodes in the mesh, listing their identifiers and coordinates (x and y).

The contents of the project_name.dat file could be something like this:

Node X Y

1 -1.28571e+001 -1.92931e+000

2 -1.15611e+001 -2.13549e+000

3 -1.26436e+001 -5.44919e-001

4 -1.06161e+001 -1.08545e+000

5 -1.12029e+001 9.22373e-002

...

*NodesCoord can also be used inside a loop of elements. In this case, it needs an additional argument that

gives the local number of the node inside the element. After this argument it is also possible to give which

coordinate has to be written: x, y or z.

Inside a loop of elements:

*NodesCoord(4) writes the coordinates of the 4th node of the actual element of the loop.

*NodesCoord(5,1) writes the x coordinate of the 5th node of the actual element of the loop.

*NodesCoord(5,2) writes the y coordinate of the 5th node of the actual element of the loop.

*NodesCoord(5,3) writes the z coordinate of the 5th node of the actual element of the loop.

*ElemsConec

*ElemsConec

This command writes the element's connectivities, i.e. the list of the nodes that belong to the element,

displaying the direction for each case (anti-clockwise direction in 2D, and depending on the standards in 3D).

For shells, the direction must be defined. However, this command accepts the argument swap and this implies

that the ordering of the nodes in quadratic elements will be consecutive instead of hierarchical. The

connectivities are considered as integers (see *intformat and *format).

If *ElemsConec receives an integer argument (beginning from 1), this argument indicates which element

connectivity must be written:

Note: In the first versions of GiD, the optional parameter of the last command explained was invert instead of

*format "%5i%14.5e%14.5e"

*NodesNum *NodesCoord(1,real) *NodesCoord(2,real)

*end nodes

GiD v17

Copyright © 2024, GiD, CIMNE 326

swap, as it is now. It was changed due to technical reasons. If you have an old .bas file prior to this

specification, which contains this command in its previous form, when you try to export the calculation file, you

will be warned about this change of use. Be aware that the output file will not be created as you expect.

*GlobalNodes

*GlobalNodes

This command returns the nodes that belong to an element's face where a condition has been defined (on the

loop over the elements). The direction for this is the same as for that of the element's connectivities. The

returned values are considered as integers (see *intformat and *format).If *GlobalNodes receives an integer

argument (beginning from 1), this argument indicates which face connectivity must be written.

So, the local numeration of the faces is:

Triangle: (1-2) (2-3) (3-1)

Quadrilateral: (1-2) (2-3) (3-4) (4-1)

Tetrahedra: (1-2-3) (2-4-3) (3-4-1) (4-2-1)

Hexahedra: (1-2-3-4) (1-4-8-5) (1-5-6-2) (2-6-7-3) (3-7-8-4) (5-8-7-6)

Prism: (1-2-3) (1-4-5-2) (2-5-6-3) (3-6-4-1) (4-6-5)

Pyramid: (1-2-3-4) (1-5-2) (2-5-3) (3-5-4) (4-5-1)

*LocalNodes

*LocalNodes

The only difference between this and *GlobalNodes one is that the returned value is the local node's numbering

for the corresponding element (between 1 and nnode).

*CondElemFace

*CondElemFace

This command return the number of face of the element where a condition has been defined (beginning from

1). The information is equivalent to the obtained with the *localnodes command

*ElemsNnode

*ElemsNnode

This command returns the number of nodes of the current element (valid only inside a loop over elements).

Example:

*loop elems

*ElemsNnode

*end elems

*ElemsNnodeCurt

*ElemsNnodeCurt.

This command returns the number of vertex nodes of the current element (valid only inside a loop over

elements). For example, for a quadrilateral of 4, 8 or 9 nodes, it returns the value 4.

GiD v17

Copyright © 2024, GiD, CIMNE 327

*ElemsNNodeFace

*ElemsNNodeFace

This command returns the number of face nodes of the current element face (valid only inside a loop over

elements onlyincond, with a previous *set cond of a condition defined over face elements).

Example:

*loop elems

*ElemsNnodeFace

*end elems

*ElemsNNodeFaceCurt

*ElemsNNodeFaceCurt

This command returns the short (corner nodes only) number of face nodes of the

current element face (valid only inside a loop over elements onlyincond, with a

previous *set cond of a condition defined over face elements).

Example:

*loop elems

*ElemsNnodeFaceCurt

*end elems

*ElemsTypeName

*ElemsTypeName

This returns the current element type as a string value: Linear, Triangle, Quadrilateral, Tetrahedra, Hexahedra,

Prism, Point, Pyramid, Sphere, Circle. (Valid only inside a loop over elements.)

*ElemsCenter

*ElemsCenter

This returns the element center. (Valid only inside a loop over elements.)

Note: This command is only available in GiD version 9 or later.

*ElemsRadius

*ElemsRadius:

This returns the element radius. (Valid only inside a loop over sphere or Circle elements.)

Note: This command is only available in GiD version 8.1.1b or later.

*ElemsNormal

*ElemsNormal

GiD v17

Copyright © 2024, GiD, CIMNE 328

This command writes the normal's coordinates. It must be inside a loop (see *loop) over elements, and it is only

defined for triangles, quadrilaterals, and circles (and also for lines in 2D cases).

If *ElemsNormal receives an integer argument (from 1 to 3) this argument indicates which coordinate of the

normal must be written: x, y or z.

*LocalAxesDef

*LocalAxesDef

This command returns the nine numbers that define the transformation matrix of a vector from the local axes

system to the global one.

Example:

*loop localaxes

*format "%10.4lg %10.4lg %10.4lg"

x'=*LocalAxesDef(1) *LocalAxesDef(4) *LocalAxesDef(7)

*format "%10.4lg %10.4lg %10.4lg"

y'=*LocalAxesDef(2) *LocalAxesDef(5) *LocalAxesDef(8)

*format "%10.4lg %10.4lg %10.4lg"

z'=*LocalAxesDef(3) *LocalAxesDef(6) *LocalAxesDef(9)

*end localaxes

*LocalAxesDef(EulerAngles)

*LocalAxesDef(EulerAngles)

This is similar to the LocalAxesDef command, only with the EulerAngles option.

It returns three numbers that are the 3 Euler angles (radians) that define a local

axes system , with the so-called "x-convention," (see https://mathworld.

wolfram.com/EulerAngles.html)

https://mathworld.wolfram.com/EulerAngles.html
https://mathworld.wolfram.com/EulerAngles.html

GiD v17

Copyright © 2024, GiD, CIMNE 329

cosA=cos(angles[0])

sinA=sin(angles[0])

cosB=cos(angles[1])

sinB=sin(angles[1])

cosC=cos(angles[2])

sinC=sin(angles[2])

X[0]= cosC*cosA - sinC*cosB*sinA

X[1]= -sinC*cosA -

cosC*cosB*sinA

X[2]= sinB*sinA

Y[0]= cosC*sinA + sinC*cosB*cosA

Y[1]= -sinC*sinA +

cosC*cosB*cosA

Y[2]= -sinB*cosA

Z[0]= sinC*sinB

Z[1]= cosC*sinB

Z[2]= cosB

if(Z[2]<1.0-EPSILON && Z[2]>-1.0+EPSILON){

double senb=sqrt(1.0-Z[2]*Z[2]);

angles[0]=acos(-Y[2]/senb);

if(X[2]/senb<0.0) angles[0]=M_2PI-

angles[0];

angles[1]=acos(Z[2]);

angles[2]=acos(Z[1]/senb);

if(Z[0]/senb<0.0) angles[2]=M_2PI-

angles[2];

} else {

angles[0]=0.0;

angles[1]=acos(Z[2]);

angles[2]=acos(X[0]);

if(-X[1]<0.0) angles[2]=M_2PI-angles

[2];

}

How to calculate X[3] Y[3] Z[3] orthonormal vector axes from three euler angles

angles[3]

How to calculate euler angles angles[3] from X[3] Y[3] Z[3] orthonormal vector axes

GiD v17

Copyright © 2024, GiD, CIMNE 330

*LocalAxesDefCenter

*LocalAxesDefCenter(1) *LocalAxesDefCenter(2) *LocalAxesDefCenter

(3)

*LocalAxesDefCenter

*LocalAxesDefCenter

This command returns the origin of coordinates of the local axes as defined by the

user. The "Automatic" local axes do not have a center, so the point (0,0,0) is

returned. The index of the coordinate (from 1 to 3) can optionally be given to

LocalAxesDefCenter to get the x, y or z value.

Example:

Specific commands

Control commands, etc.

*\ , *#, **

*\ To avoid line-feeding you need to write *\, so that the line currently being used continues on the following line

of the file filename.bas.

*# If this is placed at the beginning of the line, it is considered as a comment and therefore is not written.

** In order for an asterisk symbol to appear in the text, two asterisks ** must be written.

*loop ... *end

*loop, *end, *break. These are declared for the use of loops. A loop begins with a line that starts with loop

(none of these commands is case-sensitive) and contains another word to express the variable of the loop.

There are some lines in the middle that will be repeated depending on the values of the variable, and whose

parameters will keep on changing throughout the iterations if necessary. Finally, a loop will end with a line that

finishes with *end. After *end, you may write any kind of comments in the same line. The command **break

inside a *loop or *for block, will finish the execution of the loop and will continue after the *end line.

Note: these commands must be written at the beginning of a line and the rest of the line will serve as their

modifiers. No additional text should be written.

The variables that are available for *loop are the following:

 elems, nodes, faces, materials, conditions, layers, groups, intervals, localaxes. These commands

mean, respectively, that the loop will iterate over the elements, nodes, faces of a group, materials,

conditions, layers, groups, intervals or local axes systems. The loops can be nested among them. The

loop over the materials will iterate only over the effectively assigned materials to an entity, in spite of the

fact that more materials have been defined. The number of the materials will begin with the number 1. If

a command that depends on the loop is located outside it, the number will also take by default the value

1.

After the command *loop:

 If the variable is nodes, elems or faces, you can include one of the modifiers: *all, *OnlyInCond,

*OnlyInLayer or *OnlyInGroup. The first one signifies that the iteration is going to be performed over all the

GiD v17

Copyright © 2024, GiD, CIMNE 331

*loop nodes

*format "%5i%14.5e%14.5e"

*NodesNum *NodesCoord(1,real) *NodesCoord(2,real)

*end nodes

*Set Cond Point-Weight *nodes

*loop nodes OnlyInCond

*NodesNum *cond(1)

*end

*Loop Elems

*ElemsNum *ElemsLayerNum

*End Elems

entities.

The *OnlyInCond modifier implies that the iteration will only take place over the entities that satisfy the

relevant condition. This condition must have been previously defined with *set cond.

*OnlyInLayer implies that the iteration will only take place over the entities that are in the specified layer;

layers must be specified with the command *set Layer.

*OnlyInGroup implies that the iteration will only take place over the entities that are in the specified group;

group must be specified inside a loop groups with the command *set Group *GroupName

*nodes|elems|faces, or *set Group <name> , with <name> the full name of the group.

By default, it is assumed that the iteration will affect all the entities.

 If the variable is material you can include the modifier *NotUsed to make a loop over those materials that

are defined but not used.

 If the variable is conditions you must include one of the modifiers: *Nodes, *BodyElements, *

FaceElements, *Layers or *Groups, to do the loop on the conditions defined over this kind of mesh entity,

or only the conditions declared 'over layers' or only the ones declared 'over groups'.

 If the variable is layers you can include modifiers: OnlyInCond if before was set a condition defined 'over

layers'

 If the variable is groups you can include modifiers: OnlyInCond if before was set a condition defined 'over

groups' (e.g. inside a *loop conditions *groups)

Example 1:

This command carries out a rundown of all the nodes of the mesh, listing their identifiers and coordinates (x and

y coordinates).

Example 2:

This carries out a rundown of all the nodes assigned the condition "Point-Weight" and provides a list of their

identifiers and the first "weight" field of the condition in each case.

Example 3:

This carries out a rundown of all the elements and provides a list of their identifier and the identifier of the layer

to which they belong.

Example 4:

GiD v17

Copyright © 2024, GiD, CIMNE 332

*Loop Layers

*LayerNum *LayerName *LayerColorRGB

*End Layers

*loop intervals

interval=*loopvar

*loop conditions *groups

*if(condnumentities)

condition name=*condname

*loop groups *onlyincond

*groupnum *groupname *cond

*end groups

*end if

*end conditions

*end intervals

This carries out a rundown of all the layers and for each layer it lists its identifier and name.

Example 5:

This carries out a rundown of all conditions defined to be applied on the mesh 'over face elements', and for each

condition it lists its name and for each element where this condition is applied are printed the element number,

the marked face and the condition field values.

Example 6:

This do a loop for each interval, and for each condition defined 'over groups' list the groups where the condition

was applied and its values.

*for ... *end

*for, *end, *break. The syntax of this command is equivalent to *for in C-language.

*for(varname=expr.1;varname<=expr.2;varname=varname+1)

*end for

The meaning of this statement is the execution of a controlled loop, since varname is equal to expr.1 until it is

equal to expr.2, with the value increasing by 1 for each step. varname is any name and expr.1 and expr.2 are

*Loop Conditions OverFaceElements

*CondName

*Loop Elems OnlyInCond

*elemsnum *condelemface *cond

*End Elems

*End Conditions

GiD v17

Copyright © 2024, GiD, CIMNE 333

*for(i=1;i<=5;i=i+1)

variable i=*i

*end for

*if((fabs(loopvar)/4)<1.e+2)

*if((p3<p2)||p4)

*if((strcasecmp(cond(1),"XLoad")==0)&&(cond(2)!=0))

*if(GenData(31,int)==1)

...(1)

*elseif(GenData(31,int)==2)

...(2)

*else

...(3)

*endif

arithmetical expressions or numbers whose only restrictions are to express the range of the loop.

The command *break inside a *loop or *for block, will finish the execution of the loop and will continue after the

*end line.

Example:

*if ... *endif

*if, *else, *elseif, *endif. These commands create the conditionals. The format is a line which begins with *if

followed by an expression between parenthesis. This expression will be written in C-language syntax, value

return commands, will not begin with *, and its variables must be defined as integers or real numbers (see

*format, *intformat, *realformat), with the exception of strcmp and strcasecmp. It can include relational as well

as arithmetic operators inside the expressions.

The following are valid examples of the use of the conditionals:

The first example is a numerical example where the condition is satisfied for the values of the loop under 400,

while the other two are logical operators; in the first of these two, the condition is satisfied when p3<p2 or p4 is

different from 0, and in the second, when the first field of the condition is called XLoad (with this particular

writing) and the second is not null.

If the checked condition is true, GiD will write all the lines until it finds the corresponding *else, *elseif or *endif

(*end is equivalent to *endif after *if). *else or *elseif are optional and require the writing of all the lines until the

corresponding *endif, but only when the condition given by *if is false. If either *else or *elseif is present, it must

be written between *if and *endif. The conditionals can be nested among them.

The behaviour of *elseif is identical to the behaviour of *else with the addition of a new condition:

In the previous example, the body of the first condition (written as 1) will be written to the data file if GenData(31,

int) is 1, the body of the second condition (written as 2) will be written to the data file if GenData(31,int) is 2, and

if neither of these is true, the body of the third condition (written as 3) will be written to the data file.

GiD v17

Copyright © 2024, GiD, CIMNE 334

*Set Cond Volu-Cstrt *nodes

*Add Cond Surf-Cstrt *nodes

*Add Cond Line-Cstrt *nodes

*Add Cond Poin-Cstrt *nodes

*set Layer example_layer_1 *elems

*loop elems *OnlyInLayer

Note: A conditional can also be written in the middle of a line. To do this, begin another line and write the

conditional by means of the command *\.

*set

*set. This command has the following purposes:

 *set cond: To set a condition.

 *set layer "layer name" *nodes|elems: To set a layer.

 *set group "group name" *nodes|elems|faces: To set a group. (inside a *loop groups can use *GroupName

as "group name" ,to get the name of the group of the current loop)

 *set elems: To indicate the elements.

 *set var: To indicate the variables to use.

It is not necessary to write these commands in lowercase, so *Set will also be valid in all the examples.

*set cond

In the case of the conditions, GiD allows the combination of a group of them via the use of *add cond. When a

specific condition is about to be used, it must first be defined, and then this definition will be used until another is

defined. If this feature is performed inside a loop over intervals, the corresponding entities will be chosen.

Otherwise, the entities will be those referred to in the first interval.

It is done in this way because when you indicate to the program that a condition is going to be used, GiD

creates a table that lets you know the number of entities over which this condition has been applied. It is

necessary to specify whether the condition takes place over the *nodes, over the *elems or over *layers to

create the table.

So, a first example to check the nodes where displacement constraints exist could be:

These let you apply the conditions directly over any geometric entity.

*Set Layer

*Set Layer "layer name" *elems|nodes

*Add Layer "layer name"

*Remove Layer "layer name"

This command sets a group of nodes. In the following loops over nodes/elements with the modifier

*OnlyInLayer, the iterations will only take place over the nodes/elements of that group.

Example 1:

GiD v17

Copyright © 2024, GiD, CIMNE 335

Nº:*ElemsNum Name of Layer:*ElemsLayerName Nº of Layer :*ElemsLayerNum

*end elems

*loop layers

*set Layer *LayerName *elems

*loop elems *OnlyInLayer

Nº:*ElemsNum Name of Layer:*ElemsLayerName Nº of Layer :*ElemsLayerNum

*end elems

*end layers

*Set Cond Line-Constraints *nodes

*Set Cond Line-Pressure *elems *CanRepeat

Example 2:

In this example the command *LayerName is used to get the layer name.

There are some modifiers available to point out particular specifications of the conditions.

If the command *CanRepeat is added after *nodes or *elems in *Set cond, one entity can appear several times

in the entities list. If the command *NoCanRepeat is used, entities will appear only once in the list. By default,

*CanRepeat is off except where one condition has the *CanRepeat flag already set.

A typical case where you would not use *CanRepeat might be:

In this case, when two lines share one endpoint, instead of two nodes in the list, only one is written.

A typical situation where you would use *CanRepeat might be:

In this case, if one triangle of a quadrilateral has more than one face in the marked boundary then we want this

element to appear several times in the elements list, once for each face.

Other modifiers are used to inform the program that there are nodes or elements that can satisfy a condition

more than once (for instance, a node that belongs to a certain number of lines with different prescribed

movements) and that have to appear unrepeated in the data input file, or, in the opposite case, that have to

appear only if they satisfy more than one condition. These requirements are achieved with the commands *or(i,

type) and *and(i,type), respectively, after the input of the condition, where i is the number of the condition to be

considered and type is the type of the variable (integer or real).

For the previous example there can be nodes or elements in the intersection of two lines or maybe belonging to

different entities where the same condition had been applied. To avoid the repetition of these nodes or

elements, GiD has the modifier *or, and in the case where two or more different values were applied over a

node or element, GiD only would consider one, this value being different from zero. The reason for this can be

easily understood by looking at the following example. Considering the previous commands transformed as:

GiD v17

Copyright © 2024, GiD, CIMNE 336

*Set Cond Volu-Cstrt *nodes *or(1,int) *or(2,int)

*Add Cond Surf-Cstrt *nodes *or(1,int) *or(2,int)

*Add Cond Line-Cstrt *nodes *or(1,int) *or(2,int)

*Add Cond Poin-Cstrt *nodes *or(1,int) *or(2,int)

*Set Cond Dummy *elems

*Set elems(All)

*Remove elems(Linear)

*Set Cond Dummy *elems

*Set elems(Hexahedra)

*Add elems(Tetrahedra)

*Add elems(Quadrilateral)

*Add elems(Triangle)

where *or(1,int) means the assignment of that node to the considered ones satisfying the condition if the integer

value of the first conditions' field is different from zero, and (*or(2,int) means the same assignment if the integer

value of the second conditions' field is different from zero). Let us imagine that a zero in the first field implies a

restricted movement in the direction of the X-axis and a zero in the second field implies a restricted movement

in the direction of the Y-axis. If a point belongs to an entity whose movement in the direction of the X-axis is

constrained, but whose movement in the direction of the Y-axis is released and at the same time to an entity

whose movement in the direction of the Y-axis is constrained, but whose movement in the direction of the X-

axis is released, GiD will join both conditions at that point, appearing as a fixed point in both directions and as a

node satisfying the four expressed conditions that would be counted only once.

The same considerations explained for adding conditions through the use of *add cond apply to elements, the

only difference being that the command is *add elems. Moreover, it can sometimes be useful to remove sets of

elements from the ones assigned to the specific conditions. This can be done with the command *remove

elems. So, for instance, GiD allows combinations of the type:

To indicate that all dummy elements apart from the linear ones will be considered, as well as:

*set var

The format for *set var differs from the syntax for the other two *set commands. Its syntax is as follows:

*Set var varname = expression

where varname is any name and expression is any arithmetical expression, number or command, where the

latter must be written without * and must be defined as Int or Real.

A Tcl procedure can also be called, but it must return a numerical result.The following are valid examples for

these assignments:

GiD v17

Copyright © 2024, GiD, CIMNE 337

*format, *intformat, *realformat

*format, *intformat, *realformat, . These commands explain how the output of different mathematical

expressions will be written to the analysis file. The use of this command consists of a line which begins with

the corresponding version, *intformat, *realformat or *format (again, these are not case-sensitive), and

continues with the desired writing format, expressed in C-language syntax argument, between double

quotes (").

The integer definition of *intformat and the real number definition of *realformat remain unchanged until another

definition is provided via *intformat and *realformat, respectively. The argument of these two commands is

composed of a unique field. This is the reason why the *intformat and *realformat commands are usually

invoked in the initial stages of the .bas file, to set the format configuration of the integer or real numbers to be

output during the rest of the process.

The *format command can include several field definitions in its argument, mixing integer and real definitions,

but it will only affect the line that follows the command's instance one. Hence, the *format command is typically

used when outputting a listing, to set a temporary configuration.

In the paragraphs that follow, there is an explanation of the C format specification, which refers to the field

specifications to be included in the arguments of these commands. Keep in mind that the type of argument that

the *format command expects may be composed of several fields, and the *intformat and *realformat

commands' arguments are composed of an unique field, declared as integer and real, respectively, all inside

double quotes:

A format specification, which consists of optional and required fields, has the following form:

%[flags][width][.precision]type

The start of a field is signaled by the percentage symbol (%). Each field specification is composed of: some

flags, the minimum width, a separator point, the level of precision of the field, and a letter which specifies the

type of the data to be represented. The field type is the only one required.

The most common flags are:

- To left align the result

+ To prefix the numerical output with a sign (+ or -)

To force the real output value to contain a decimal point.

*Set var ko1=cond(1,real)

*Set var ko2=2

*Set var S1=CondNumEntities

*Set var p1=elemsnum()

*Set var b=operation(p1*2)

*tcl(proc MultiplyByTwo { x } { return [expr {$x*2}] })*\

*Set var a=tcl(MultiplyByTwo *p1)

GiD v17

Copyright © 2024, GiD, CIMNE 338

*Intformat "%5i"

*Realformat "%10.3e"

*format "%10i%10.3e%10i%15.6e"

*SetFormatForceWidth

*set var num=-31415.16789

*format "%8.3f"

*num

*SetFormatStandard

The most usual representations are integers and floats. For integers the letters d and i are available, which

force the data to be read as signed decimal integers, and u for unsigned decimal integers.

For floating point representation, there are the letters e, f and g, these being followed by a decimal point to

separate the minimum width of the number from the figure giving the level of precision.The number of digits

after the decimal point depends on the requested level of precision.

Note: The standard width specification never causes a value to be truncated. A special command exists in GiD:

*SetFormatForceWidth, which enables this truncation to a prescribed number of digits.

For string representations, the letter s must be used. Characters are printed until the precision value is reached.

The following are valid examples of the use of format:

With this sentence, usually located at the start of the file, the output of an integer quantity is forced to be right

aligned on the fifth column of the text format on the right side. If the number of digits exceeds five, the

representation of the number is not truncated.

This sentence, which is also frequently located in the first lines of the template file, sets the output format for the

real numbers as exponential with a minimum of ten digits, and three digits after the decimal point.

This complex command will specify a multiple assignment of formats to some output columns. These columns

are generated with the line command that will follow the format line. The subsequent lines will not use this

format, and will follow the general settings of the template file or the general formats: *IntFormat, *RealFormat.

 *SetFormatForceWidth, *SetFormatStandard The default width specification of a "C/C+" format, never

causes a value to be truncated.

*SetFormatForceWidth is a special command that allows a figure to be truncated if the number of characters to

print exceeds the specified width.

*SetFormatStandard changes to the default state, with truncation disabled.

For example:

GiD v17

Copyright © 2024, GiD, CIMNE 339

*set var num=1

*tcl(WriteSurfaceInfo *num)

*set var num2=tcl(MultiplyByTwo *num)

proc WriteSurfaceInfo { num } {

return [GiD_Info list_entities surfaces $num]

}

proc MultiplyByTwo { x } {

return [expr {$x*2}]

}

*include includes\execntrlmi.h

Output:

-31415.1

-31415.168

The first number is truncated to 8 digits, but the second number, printed with "C" standard, has 3 numbers after

the decimal point, but more than 8 digits.

*Tcl

*Tcl This command allows information to be printed using the Tcl extension language. The argument of this

command must be a valid Tcl command or expression which must return the string that will be printed.

Typically, the Tcl command is defined in the Tcl file (.tcl , see TCL AND TK EXTENSION for details).

Example: In this example the *Tcl command is used to call a Tcl function defined in the problem type .tcl file.

That function can receive a variable value as its argument with *variable. It is also possible to assign the

returned value to a variable, but the Tcl procedure must return a numerical value.

In the .bas file:

In the .tcl file:

*Include

*Include

The include command allows you to include the contents of a slave file inside a master .bas file, setting a

relative path from the Problem Type directory to this secondary file.

Example:

*format "%8.3f"

*num

GiD v17

Copyright © 2024, GiD, CIMNE 340

*MessageBox error: Quadrilateral elements are not permitted.

WarningBox Warning: Bad elements. A STL file is a collection of

triangles bounding a volume.

Note: The *.bas extension cannot be used for the included file, to avoid create multiple output files.

*MessageBox *WarningBox

*MessageBox. This command stops the execution of the .bas file and prints a message in a window; this

command should only be used when a fatal error occurs.

Example:

*WarningBox. This is the same as MessageBox, but the execution is not stopped.

Example:

General description

All the rules that apply to filename.bas files are also valid for other files with the .bas extension. Thus,

everything in this section will refer explicitly to the file filename.bas. Any information written to this file, apart

from the commands given, is reproduced exactly in the output file (the data input file for the numerical solver).

The commands are words that begin with the character *. (If you want to write an asterisk in the file you should

write **.) The commands are inserted among the text to be literally translated. Every one of these commands

returns one (see Single value return commands) or multiple (see Multiple values return commands) values

obtained from the preprocessing component. Other commands mimic the traditional structures to do loops or

conditionals (see Specific commands). It is also possible to create variables to manage some data. Comparing

it to a classic programming language, the main differences will be the following:

 The text is reproduced literally, without printing instructions, as it is write-oriented.

 There are no indices in the loops. When the program begins a loop, it already knows the number of

iterations to perform. Furthermore, the inner variables of the loop change their values automatically. All the

commands can be divided into three types:

 Commands that return one single value. This value can be an integer, a real number or a string. The

value depends on certain values that are available to the command and on the position of the command

within the loop or after setting some other parameters. These commands can be inserted within the text

and write their value where it corresponds. They can also appear inside an expression, which would be

the example of the conditionals. For this example, you can specify the type of the variable, integer or

real, except when using strcmp or strcasecmp. If these commands are within an expression, no * should

precede the command.

 Commands that return more than one value. Their use is similar to that of the previously indicated

commands, except for the fact that they cannot be used in other expressions. They can return different

values, one after the other, depending on some values of the project.

 Commands that perform loops or conditionals, create new variables, or define some specifications. The

latter includes conditions or types of element chosen and also serves to prevent line-feeding. These

commands must start at the beginning of the line and nothing will be written into the calculations file.

After the command, in the same line, there can be other commands or words to complement the

definitions, so, at the end of a loop or conditional, after the command you can write what loop or

conditional was finished.

The arguments that appear in a command are written immediately after it and inside parenthesis. If there is

more than one, they will be separated by commas. The parentheses might be inserted without any argument

GiD v17

Copyright © 2024, GiD, CIMNE 341

%%%% Problem Size %%%%

Number of Elements & Nodes:

*nelem *npoin

%%%% Problem Size %%%%

Number of Elements & Nodes:

5379 4678

inside, which is useful for writing something just after the command without inserting any additonal spaces. The

arguments can be real numbers or integers, meaning the word REAL or the word INT (both in upper- or

lowercase) that the value to which it points has to be considered as real or integer, respectively. Other types of

arguments are sometimes allowed, like the type of element, described by its name, in the command *set elem,

or a chain of characters inserted between double quotes " for the C-instructions strcmp and strcasecmp. It is

also sometimes possible to write the name of the field instead of its ordering number.

Example:

Below is an example of what a .bas file can be. There are two commands (*nelem and *npoin) which return the

total number of elements and nodes of a project.

This .bas file will be converted into a project_name.dat file by GiD. The contents of the project_name.dat file

could be something like this:

(5379 being the number of elements of the project, and 4678 the number of nodes).

Detailed example - Template file creation

Below is an example of how to create a Template file, step by step.

Note that this is a real file and as such has been written to be compatible with a particular solver program. This

means that some or all of the commands used will be non-standard or incompatible with the solver that another

user may be using.

The solver for which this example is written treats a line inside the calculation input file as a comment if it is

prefixed by a $ sign. In the case of other solvers, another convention may apply.

Of course, the real aim of this example is familiarize you with the commands GiD uses. What follows is the

universal method of accessing GiD's internal database, and then outputting the desired data to the solver.

It is assumed that files with the .bas extension will be created inside the working directory where the problem

type file is located. The filename must be problem_type_name.bas for the first file and any other name for the

additional .bas files. Each .bas file will be read by GiD and translated to a .dat file.

It is very important to remark that any word in the .bas file having no meaning as a GiD compilation command or

not belonging to any command instructions (parameters), will be written verbatim to the output file.

First, we create the header that the solver needs in this particular case.

GiD v17

Copyright © 2024, GiD, CIMNE 342

It consists of the name of the solver application and a brief description of its behaviour.

$---

CALSEF: PROGRAM FOR STRUCTURAL ANALYSIS

What follows is a commented line with the ECHO ON command. This, when uncommented, is useful if you want

to monitor the progress of the calculation. While this particular command may not be compatible with your

solver, a similar one may exist.

$---

$ ECHO ON

The next line specifies the type of calculation and the materials involved in the calculation; this is not a GiD

related command either.

$---

LINEAR-STATIC, SOLIDS

As you can see, a commented line with dashes is used to separate the different parts of the file, thus improving

the readability of the text.

The next stage involves the initialization of some variables. The solver needs this to start the calculation

process.

The following assignments take the first (parameter (1)) and second (parameter (2)) fields in the general

problem, as the number of problems and the title of the problem.

The actual position of a field is determined by checking its order in the problem file, so this process requires you

to be precise.

Assignment of the first (1) field of the Problem data file, with the command *GenData(1):

$---

$ NUMBER OF PROBLEMS: NPROB = *GenData(1)

$---

Assignment of the second (2) field assignment, *GenData(2):

$ TITLE OF THE PROBLEM: TITULO= *GenData(2)

$---

The next instruction states the field where the starting time is saved. In this case, it is at the 10th position of the

general problem data file, but we will use another feature of the *GenData command, the parameter of the

command will be the name of the field.

GiD v17

Copyright © 2024, GiD, CIMNE 343

This method is preferable because if the list is shifted due to a field deing added or subtracted, you will not lose

the actual position. This command accepts an abbreviation, as long as there is no conflict with any other field

name.

$---

$ TIME OF START: TIME= *GenData(Starting_time)

$---

Here comes the initialization of some general variables relevant to the project in question - the number of points,

the number of elements or the number of materials.

The first line is a description of the section.

$ DIMENSIONS OF THE PROBLEM:

The next line introduces the assignments.

DIMENSIONS :

This is followed by another line which features the three variables to be assigned. NPNOD gets, from the *npoin

function, the number of nodes for the model; NELEM gets, from *nelem, either the total number of elements in

the model or the number of elements for every kind of element; and NMATS is initialized with the number of

materials:

NPNOD= *npoin, NELEM= *nelem, NMATS= *nmats, \

In the next line, NNODE gets the maximum number of nodes per element and NDIME gets the variable *ndime.

This variable must be a number that specifies whether all the nodes are on the plane whose Z values are equal

to 0 (NDIME=2), or if they are not (NDIME=3):

NNODE= *nnode, NDIME= *ndime, \

The following lines take data from the general data fields in the problem file. NCARG gets the number of charge

cases, NGDLN the number of degrees of freedom, NPROP the properties number, and NGAUSS the gauss

number; NTIPO is assigned dynamically:

NLOAD= *GenData(Load_Cases), *\

You could use NGDLN= *GenData(Degrees_Freedom), *\, but because the length of the argument will exceed

one line, we have abbreviated its parameter (there is no conflict with other question names in this problem file)

to simplify the command.

NGDLN= *GenData(Degrees_Fre), *\

NPROP= *GenData(Properties_Nbr), \

NGAUS= *GenData(Gauss_Nbr) , NTIPO= *\

GiD v17

Copyright © 2024, GiD, CIMNE 344

Note that the last assignment is ended with the specific command *\ to avoid line feeding. This lets you include

a conditional assignment of this variable, depending on the data in the General data problem.

Within the conditional a C format-like strcmp instruction is used. This instruction compares the two strings

passed as a parameter, and returns an integer number which expresses the relationship between the two

strings. If the result of this operation is equal to 0, the two strings are identical; if it is a positive integer, the first

argument is greater than the second, and if it is a negative integer, the first argument is smaller than the second.

The script checks what problem type is declared in the general data file, and then it assigns the coded number

for this type to the NTIPO variable:

*if(strcmp(GenData(Problem_Type),"Plane-stress")==0)

1 *\

*elseif(strcmp(GenData(Problem_Type),"Plane-strain")==0)

2 *\

*elseif(strcmp(GenData(Problem_Type),"Revol-Solid")==0)

3 *\

*elseif(strcmp(GenData(Problem_Type),"Solid")==0)

4 *\

*elseif(strcmp(GenData(Problem_Type),"Plates")==0)

5 *\

*elseif(strcmp(GenData(Problem_Type),"Revol-Shell")==0)

6 *\

*endif

You have to cover all the cases within the if sentences or end the commands with an elseif you do not want

unpredictable results, like the next line raised to the place where the parameter will have to be:

$ Default Value:

*else

0*\

*endif

In our case this last rule has not been followed, though this can sometimes be useful, for example when the

problem file has been modified or created by another user and the new specification may differ from the one we

expect.

The next assignment is formed by a string compare conditional, to inform the solver about a configuration

setting.

First is the output of the variable to be assigned.

, IWRIT= *\

Then there is a conditional where the string contained in the value of the Result_File field is compred with the

string "Yes". If the result is 0, then the two strings are the same, while the output result 1 is used to declare a

boolean TRUE.

GiD v17

Copyright © 2024, GiD, CIMNE 345

*if(strcmp(GenData(Result_File),"Yes")==0)

1 ,*\

Then we compare the same value string with the string "No", to check the complementary option. If we find that

the strings match, then we output a 0.

*elseif(strcmp(GenData(Result_File),"No")==0)

0 ,*\

*endif

The second to last assignment is a simple output of the solver field contents to the INDSO variable:

INDSO= *GenData(Solver) , *\

The last assignment is a little more complicated. It requires the creation of some internal values, with the aid of

the *set cond command.

The first step is to set the conditions so we can access its parameters. This setting may serve for several loops

or instructions, as long as the parameters needed for the other blocks of instructions are the same.

This line sets the condition Point-Constraints as an active condition. The *nodes modifier means that the

condition will be listed over nodes. The *or(... modifiers are necessary when an entity shares some conditions

because it belongs to two or more elements.

As an example, take a node which is part of two lines, and each of these lines has a different condition assigned

to it. This node, a common point of the two lines, will have these two conditions in its list of properties. So

declaring the *or modifiers, GiD will decide which condition to use, from the list of conditions of the entity.

A first instruction will be as follows, where the parameters of the *or commands are an integer - (1, and (3, in

this example - and the specification int, which forces GiD to read the condition whose number position is the

integer.

In our case, we find that the first (1) field of the condition file is the X-constraint, and the third (3) is the Y-

constraint:

GiD still has no support for substituting the condition's position in the file by its corresponding label, in contrast

to case for the fields in the problem data file, for which it is possible.

*Set Cond Surface-Constraints *nodes *or(1,int) *or(3,int)

Now we want to complete the setting of the loop, with the addition of new conditions.

*Add Cond Line-Constraints *nodes *or(1,int) *or(3,int)

*Add Cond Point-Constraints *nodes *or(1,int) *or(3,int)

GiD v17

Copyright © 2024, GiD, CIMNE 346

Observe the order in which the conditions have been included: firstly, the surface constraints with the *Set Cond

command, since it is the initial sentence; then the pair of *Add Cond sentences, the line constraints; and finally,

the point constraints sentence. This logical hierarchy forces the points to be the most important items.

Last of all, we set a variable with the number of entities assigned to this particular condition.

Note that the execution of this instruction is only possible if a condition has been set previously.

NPRES= *CondNumEntities

To end this section, we put a separator in the output file:

$---

Thus, after the initialization of these variables, this part of the file ends up as:

$ DIMENSIONS OF THE PROBLEM:

DIMENSIONES :

NPNOD= *npoin, NELEM= *nelem, NMATS= *nmats, \

NNODE= *nnode, NDIME= *ndime, \

NCARG= *GenData(Charge_Cases), *\

NGDLN= *GenData(Degrees_Fre), *\

NPROP= *GenData(Properties_Nbr), \

NGAUS= *GenData(Gauss_Nbr) , NTIPO= *\

*if(strcmp(GenData(Problem_Type),"Tens-Plana")==0)

1 *\

*elseif(strcmp(GenData(Problem_Type),"Def-Plana")==0)

2 *\

*elseif(strcmp(GenData(Problem_Type),"Sol-Revol")==0)

3 *\

*elseif(strcmp(GenData(Problem_Type),"Sol-Tridim")==0)

4 *\

*elseif(strcmp(GenData(Problem_Type),"Placas")==0)

5 *\

*elseif(strcmp(GenData(Problem_Type),"Laminas-Rev")==0)

6 *\

*endif

, IWRIT= *\

*if(strcmp(GenData(Result_File),"Yes")==0)

1 ,\

*elseif(strcmp(GenData(Result_File),"No")==0)

0 ,\

*endif

INDSO= *GenData(Solver) , *\

*Set Cond Surface-Constraints *nodes *or(1,int) *or(3,int)

*Add Cond Line-Constraints *nodes *or(1,int) *or(3,int)

GiD v17

Copyright © 2024, GiD, CIMNE 347

$---

CALSEF: PROGRAM FOR STRUCTURAL ANALYSIS

$---

$ECHO ON

$---

LINEAR-STATIC, SOLIDS

$---

$NUMBER OF PROBLEMS:

NPROB = 1

$---

$ PROBLEM TITLE

TITLE= Title_name

$---

$DIMENSIONS OF THE PROBLEM

DIMENSIONS :

$---

After creating or reading our model, and once the mesh has been generated and the conditions applied, we can

export the file (project_name.dat) and send it to the solver.

The command to create the .dat file can be found on the File -> Export -> Calculation File GiD menu. It is also

possible to use the keyboard shortcut Ctrl-x Ctrl-c.

These would be the contents of the project_name.dat file:

NPNOD= 116 , NELEM= 176 , NMATS= 0 , \

NNODE= 3 , NDIME= 2 , \

NCARG= 1 , NGDLN= 1 , NPROP= 5 , \

NGAUS= 1 , NTIPO= 1 , IWRIT= 1 , \

INDSO= 10 , NPRES= 0

This is where the calculation input begins.

Formatted nodes and coordinates listing

As with the previous section, this block of code begins with a title for the subsection:

$ NODAL COORDINATES

followed by the header of the output list:

*Add Cond Point-Constraints *nodes *or(1,int) *or(3,int)

NPRES=*CondNumEntities

$---

GiD v17

Copyright © 2024, GiD, CIMNE 348

GEOMETRY

$ ELEMENT CONNECTIVITIES

$ ELEM. MATER. CONNECTIVITIES

*loop elems

*elemsnum *elemsmat *elemsConec

*end elems

$ NODAL COORDINATES

$ NODE COORD.-X COORD.-Y COORD.-Z

*loop nodes

*format "%6i%15.5f%15.5f%15.5f"

*NodesNum *NodesCoord

*end

END_GEOMETRY

$ NODE COORD.-X COORD.-Y COORD.-Z

Now GiD will trace all the nodes of the model:

*loop nodes

For each node in the model, GiD will generate and output its number, using *NodesNum, and its coordinates,

using *NodesCoord.

The command executed before the output *format will force the resulting output to follow the guidelines of the

specified formatting.

In this example below, the *format command gets a string parameter with a set of codes: %6i specifies that the

first word in the list is coded as an integer and is printed six points from the left; the other three codes, all %15.5

f, order the printing of a real number, represented in a floating point format, with a distance of 15 spaces

between columns (the number will be shifted to have the last digit in the 15th position of the column) and the

fractional part of the number will be represented with five digits.

Note that this is a C language format command.

*format "%6i%15.5f%15.5f%15.5f"

*NodesNum *NodesCoord

*end nodes

At the end of the section the end marker is added, which in this solver example is as follows:

END_GEOMETRY

The full set of commands to make this part of the output is shown in the following lines.

GiD v17

Copyright © 2024, GiD, CIMNE 349

$---

GEOMETRY

$ ELEMENT CONNECTIVITIES

$ NODAL COORDINATES

$ NODE COORD.-X COORD.-Y COORD.-Z

The result of the evaluation is output to a file (project_name.dat) to be processed by the solver program.

The first part of the section:

$ ELEM. MATER. CONNECTIVITIES

1 1 73 89 83

2 1 39 57 52

3 1 17 27 26

4 5 1 3 5

5 5 3 10 8

6 2 57 73 67

.

.

.

176 5 41 38 24

And the second part of the section:

1 5.55102 5.51020

2 5.55102 5.51020

3 4.60204 5.82993

4 4.60204 5.82993

5 4.88435 4.73016

6 4.88435 4.73016

. . .

. . .

. . .

116 -5.11565 3.79592

END_GEOMETRY

If the solver module you are using needs a list of the nodes that have been assigned a condition, for example, a

neighborhood condition, you have to provide it as is explained in the next example.

Elements, materials and connectivities listing

Now we want to output the desired results to the output file. The first line should be a title or a label as this lets

the solver know where a loop section begins and ends. The end of this block of instructions will be signalled by

the line END_GEOMETRY.

GEOMETRY

GiD v17

Copyright © 2024, GiD, CIMNE 350

The next two of lines give the user information about what types of commands follow.

Firstly, a title for the first subsection, ELEMENTAL CONNECTIVITIES:

$ ELEMENTAL CONNECTIVITIES

followed by a header that preceeds the output list:

$ ELEM. MATER. CONNECTIVITIES

The next part of the code concerns the elements of the model with the inclusion of the *loop instruction, followed

in this case by the elems argument.

*loop elems

For each element in the model, GiD will output: its element number, by the action of the *elemsnum command,

the material assigned to this element, using the *elemsmat command, and the connectivities associated to the

element, with the *elemsConec command:

*elemsnum *elemsmat *elemsConec

*end elems

You can use the swap parameter if you are working with quadratic elements and if the listing mode of the nodes

is non-hierarchical (by default, corner nodes are listed first and mid nodes afterwards):

*elemsnum *elemsmat *elemsConec(swap)

*end elems

Nodes listing declaration

First, we set the necessary conditions, as was done in the previous section.

*Set Cond Surface-Constraints *nodes *or(1,int) *or(3,int)

*Add Cond Line-Constraints *nodes *or(1,int) *or(3,int)

*Add Cond Point-Constraints *nodes *or(1,int) *or(3,int)

NPRES=*CondNumEntities

After the data initialization and declarations, the solver requires a list of nodes with boundary conditions and the

fields that have been assigned.

In this example, all the selected nodes will be output and the 3 conditions will also be printed. The columns will

be output with no apparent format.

Once again, the code begins with a subsection header for the solver program and a commentary line for the

user:

BOUNDARY CONDITIONS

$ RESTRICTED NODES

GiD v17

Copyright © 2024, GiD, CIMNE 351

Then comes the first line of the output list, the header:

$ NODE CODE PRESCRIPTED VALUES

The next part the loop instruction, in this case over nodes, and with the specification argument *OnlyInCond, to

iterate only over the entities that have the condition assigned. This is the condition that has been set on the

previous lines.

*loop nodes *OnlyInCond

The next line is the format command, followed by the lines with the commands to fill the fields of the list.

*format "%5i%1i%1i%f%f"

*NodesNum *cond(1,int) *cond(3,int) *\

The *format command influence also includes the following two if sentences. If the degrees of freedom field

contains an integer equal or greater than 3, the number of properties will be output.

*if(GenData(Degrees_Freedom_Nodes,int)>=3)

*cond(5,int) *\

*endif

And if the value of the same field is equal to 5 the output will be a pair of zeros.

*if(GenData(Degrees_Free,int)==5)

0 0 *\

*endif

The next line ouputs the values contained in the second and fourth fields, both real numbers.

*cond(2,real) *cond(4,real) *\

In a similar manner to the previous if sentences, here are some lines of code which will output the sixth

condition field value if the number of degrees of freedom is equal or greater than three, and will output a pair of

zeros if it is equal to five.

*if(GenData(Degrees_Free,int)>=3)

*cond(6,real) *\

*endif

*if(GenData(Degrees_Free,int)==5)

0.0 0.0 *\

*endif

Finally, to end the section, the *end command closes the previous *loop. The last line is the label of the end of

the section.

GiD v17

Copyright © 2024, GiD, CIMNE 352

BOUNDARY CONDITIONS

$ RESTRICTED NODES

$ NODE CODE PRESCRIPTED VALUES

*loop nodes *OnlyInCond

*format "%5i%1i%1i%f%f"

*NodesNum *cond(1,int) *cond(3,int) *\

*if(GenData(Degrees_Free,int)>=3)

*cond(5,int) *\

*endif

*if(GenData(Degrees_Free,int)==5)

0 0 *\

*endif

*cond(2,real) *cond(4,real) *\

*if(GenData(Degrees_Free,int)>=3)

*cond(6,real) *\

*endif

*if(GenData(Degrees_Free,int)==5)

0.0 0.0 *\

*endif

*end

END_BOUNDARY CONDITIONS

$---

*end

END_BOUNDARY CONDITIONS

$---

The full set of commands included in this section are as follows:

Elements listing declaration

First, we set the loop to the interval of the data.

*loop intervals

The next couple of lines indicate the starting of one section and the title of the example, taken from the first field

in the interval data with an abbreviation on the label. They are followed by a comment explaining the type of

data we are using.

LOADS

TITLE: *IntvData(Charge_case)

$ LOAD TYPE

We begin by setting the condition as before. If one condition is assigned twice or more to the same element

GiD v17

Copyright © 2024, GiD, CIMNE 353

without including the *CanRepeat parameter in the *Set Cond, the condition will appear once; if the *CanRepeat

parameter is present then the number of conditions that will appear is the number of times it was assigned to

the condition.

*Set Cond Face-Load *elems *CanRepeat

Then, a condition checks if any element exists in the condition.

*if(CondNumEntities(int)>0)

Next is a title for the next section, followed by a comment for the user.

DISTRIBUTED ON FACES

$ LOADS DISTRIBUTED ON ELEMENT FACES

We assign the number of nodes to a variable.

$ NUMBER OF NODES BY FACE NODGE = 2

$ LOADED FACES AND FORCE VALUES

*loop elems *OnlyInCond

ELEMENT=*elemsnum(), CONNECTIV *globalnodes

*cond(1) *cond(1) *cond(2) *cond(2)

*end elems

END_DISTRIBUTED ON FACES

*endif

The final section deals with outputting a list of the nodes and their conditions.

Materials listing declaration

This section deals with outputting a materials listing.

As before, the first lines must be the title of the section and a commentary:

MATERIAL PROPERTIES

$ MATERIAL PROPERTIES FOR MULTILAMINATE

Next there is the loop sentence, this time concerning materials:

*loop materials

Then comes the line where the number of the material and its different properties are output:

*matnum() *MatProp(1) *MatProp(2) *MatProp(3) *MatProp(4)

Finally, the end of the section is signalled:

*end materials

GiD v17

Copyright © 2024, GiD, CIMNE 354

END_MATERIAL PROPERTIES

$---

The full set of commands is as follows:

MATERIAL PROPERTIES

$ MATERIAL PROPERTIES FOR MULTILAMINATE

*loop materials

*matnum() *MatProp(1) *MatProp(2) *MatProp(3) *MatProp(4)

*end materials

END_MATERIAL PROPERTIES

$---

The next section deals wth generating an elements listing.

Nodes and its conditions listing declaration

As for previous sections, the first thing to do set the conditions.

*Set Cond Point-Load *nodes

As in the previous section, the next loop will only be executed if there is a condition in the selection.

*if(CondNumEntities(int)>0)

Here begins the loop over the nodes.

PUNCTUAL ON NODES

*loop nodes *OnlyInCond

*NodesNum *cond(1) *cond(2) *\

The next *if sentences determine the output writing of the end of the line.

*if(GenData(Degrees_Free,int)>=3)

*cond(3) *\

*endif

*if(GenData(Degrees_Free,int)==5)

0 0 *\

*endif

*end nodes

To end the section, once again you have to include the end label and the closing *endif.

END_PUNCTUAL ON NODES

*endif

Finally, a message is written if the value of the second field in the interval data section inside the problem file is

equal to "si" (yes).

*if(strcasecmp(IntvData(2),"Si")==0)

SELF_WEIGHT

*endif

To signal the end of this part of the forces section, the following line is entered.

END_LOADS

Before the end of the section it remains to tell the solver what the postprocess file will be. This information is

gathered from the *IntvData command. The argument that this command receives (3) specifies that the name of

the file is in the third field of the loop iteration of the interval.

GiD v17

Copyright © 2024, GiD, CIMNE 355

*Set Cond Point-Load *nodes

*if(CondNumEntities(int)>0)

PUNCTUAL ON NODES

*loop nodes *OnlyInCond

*NodesNum *cond(1) *cond(2) *\

*if(GenData(Degrees_Free,int)>=3)

*cond(3) *\

*endif

*if(GenData(Degrees_Free,int)==5)

0 0 *\

*endif

*end

END_PUNCTUAL ON NODES

*endif

*if(strcasecmp(IntvData(2),"Si")==0)

SELF_WEIGHT

*endif

END_LOADS

$---

$POSTPROCESS FILE

FEMV = *IntvData(3)

$---

*end nodes

END_CALSEF

$---

$---

$POSTPROCESS FILE FEMV = *IntvData(3)

To end the forces interval loop the *end command is entered.

$---

*end nodes

Finally, the complete file is ended with the sentence required by the solver.

END_CALSEF $---

The preceding section is compiled completely into the following lines:

This is the end of the template file example.

Tcl/Tk example

Here is a step by step example of how to create a Tcl/Tk extension. In this example we will create the file

cmas2d.tcl, so we will be extending the capabilities of the cmas2d problem type. The file cmas2d.tcl has to be

placed inside the cdmas2d Problem Type directory.

Note: The cmas2d problem type calculates the center of mass of a 2D surface. This problem type is located

inside the Problem Types directory, in the GiD directory.

GiD v17

Copyright © 2024, GiD, CIMNE 356

proc InitGIDProject {dir } {

set materials [GiD_Info materials]

set conditions [GiD_Info conditions over_point]

CreateWindow $dir $materials $conditions

}

proc CreateWindow {dir mat cond} {

if { [GidUtils::AreWindowsDisabled] } {

return

}

set w .gid.win_example

InitWindow $w [= "CMAS2D.TCL - Example tcl file"] ExampleCMAS "" ""

1

if { ![winfo exists $w] } return ;# windows disabled ||

usemorewindows == 0

ttk::frame $w.top

ttk::label $w.top.title_text -text [= "TCL window example for

CMAS2D problem type"]

ttk::frame $w.information -relief ridge

ttk::label $w.information.path -text [= "Problem Type path: %s"

$dir]

ttk::label $w.information.materials -text [= "Available materials: %

In this example, the cmas2d.tcl creates a window which appears when the problem type is selected.

This window gives information about the location, materials and conditions of the problem type. The window has

two buttons: CONTINUE lets you continue working with the cmas2d problem type; RANDOM SURFACE

creates a random 2D surface in the plane XY.

What follows is the Tcl code for the example. There are three main procedures in the cmas2d.tcl file:

 proc InitGIDProject {dir}

This is the main procedure. It is executed when the problem type is selected. It calls the CreateWindow

procedure.

 proc CreateWindow {dir mat cond}

GiD v17

Copyright © 2024, GiD, CIMNE 357

proc CreateRandomSurface {w} {

set ret [tk_dialogRAM $w.dialog [= "Warning"] \

[= "Warning: this will create a nurbs surface in your current

project"] "" 1 [= "Ok"] [= "Cancel"]]

if {$ret ==0} {

Create_surface

destroy $w

}

}

proc Create_surface {} {

set a_x [expr rand()*10]

set a_y [expr rand()*10]

set b_x [expr $a_x + rand()*10]

set b_y [expr $a_y + rand()*10]

This procedure creates the window with information about the path, the materials and the conditions of the

project. The window has two buttons: if CONTINUE is pressed the window is dismissed; if RANDOM SURFACE

is pressed, it calls the CreateRandomSurface procedure.

proc CreateRandomSurface {w}

This procedure is called when the RANDOM SURFACE button is pressed. Before creating the surface, a dialog

box asks you to continue with or cancel the creation of the surface. If the surface is to be created, the

Create_surface procedure is called. Then, the window is destroyed.

s" $mat]

ttk::label $w.information.conditions -text [= "Available

conditions: %s" $cond]

ttk::frame $w.bottom

ttk::button $w.bottom.start -text [= "Continue"] -command "destroy

$w"

ttk::button $w.bottom.random -text [= "Random surface"] -command

"CreateRandomSurface $w"

grid $w.top.title_text -sticky ew

grid $w.top -sticky new

grid $w.information.path -sticky w -padx 6 -pady 6

grid $w.information.materials -sticky w -padx 6 -pady 6

grid $w.information.conditions -sticky w -padx 6 -pady 6

grid $w.information -sticky nsew

grid $w.bottom.start $w.bottom.random -padx 6

grid $w.bottom -sticky sew -padx 6 -pady 6

if { $::tcl_version >= 8.5 } { grid anchor $w.bottom center }

grid rowconfigure $w 1 -weight 1

grid columnconfigure $w 0 -weight 1

}

GiD v17

Copyright © 2024, GiD, CIMNE 358

A 2D surface (a four-sided 2D polygon) is created. The points of this surface are chosen at random.

set c_x [expr $b_x + rand()*10]

set c_y [expr $b_y - rand()*10]

if {$a_y < $c_y} {

set d_y [expr $a_y - rand()*10]

set d_x [expr $a_x + rand()*10]

} else {

set d_y [expr $c_y - rand()*10]

set d_x [expr $c_x - rand()*10]

}

GiD_Process escape escape escape geometry create line \

$a_x,$a_y,0.000000 $b_x,$b_y,0.000000 $c_x,$c_y,0.000000

$d_x,$d_y,0.000000 close

GiD_Process escape escape escape escape geometry create

NurbsSurface Automatic \

4 escape

GiD_Process 'Zoom Frame escape escape escape escape

}

