GID

The pre and postprocessing
system for computer analysis
In science and engineering

Using Python in GID

1 Tohil Python package
1.1 Tohil 4.3 dOCUMENTALIONottt e e e e e e
1.1 1 What's New in TONil . ..o

1.1.1.1 What's New In Tohil 4.3 ..o
1.1.1.2What's New In Tohil 4.2 . ..o
1.1.1.3What's New In TOhil 4.1 . ..o

1.1.1.4 What's New In TONil 4.0 . .. oo

1.1.1.5 What's New In Tohil 3.2 . ..o

1.1.1.6 What's New In TOhil 3.0ot e e

1.1.2 The Tohil TUtOrialo e e

1.1.2.1 1. The Tohil Tutorialo e e

1.1.2.2 2. Using Tcl from Pythono e

1.1.2.3 3. Using Python From TCl o e

1.1.2.4 4. Tohil's Tclobj Python Data TYPeottt e e e

1.1.2.5 5. Tohil's Teldict Python Data TYPEottt e e e

1.1.2.6 6. TCIPIOCS . oottt et e e

1.1.2.7 7. Shadow DiClIONANES oottt et et e e e e

1.1.3 Tohil Reference

1.1.3. 1 Tohil INtrodUCHiONo

1.1.3.2 Tohil Python FUNCLIONSo e e e e

1.1.3.3 TOhil TCI FUNCLONSo e e e e e e e e e

1034 TONI TYPES .ttt

1.1.3.5 TONIl EXCEPLONS . o .ottt e e e e e e

1.1.3.6 TONIL TCIEITOrS ..ot e e e e e

1.1.4 Building and Installing Tohil

1.1.4.1 Building and Installing on LINUX oot

1.1.4.2 Building and Installing on macOS

1.1.4.3 Building and Installing on FreeBSD

1.1.5 Dealing With BUGS oo e e

1.1.6 Tohil Copyright and LICENSEo e e

2 Install more Python ModUIES o
3 RuUn Python @s eXternal PrOCESSottt et et e e e e e e
4 RUN PYthon inside GIDo
4.1 From the IOWEE ENEIYot et e e

A 2 IDLE Shell ..

4.3 From an user-macro DUIIONo e

4.4 From a problemtype or plUgINot

5 Real example: meshio GID plugino
6 Debug PYthon COOeo
7 Debug Python from VS Code editor
B WINAOWS 7 ISSUBS . . . oottt et ettt e e et e e e e e e e e e e e e e
O MACOS ISSUBS . o .t ottt ettt e e et e e e
T0 FUIUIE WOTK .o e e

GiD

Using Python in GiD

GiD uses Tcl/Tk as scripting language and to create its GUI

Python is other scripting language, with simple syntax and very popular (and exists a lot of modules implementing features)

It is very interesting to allow call Python code from GiD, and interact with GiD (asking data, or doing actions), and this is now possible using
the tohil package.

It is possible to re-use our current Python code in GiD without need to be re-written in Tcl language.

It is possible to use a lot of Python modules to expand the current possibilities of GiD, (e.g. numpy, scipy, TensorFlow, matplotlib, ...)
Developer users with experience in Python can develop code without need to learn Tcl language (except the minimum to call the Python
code)

GiD-problemtypes and plugins Python-based become self-contained and will use a known Python version (without the need to globally
install Python or use other incompatible version)

Copyright © 2022, GiD, CIMNE 3

GiD

Tohil Python package

GiD 16.1.2d developer will include a Tcl package called tohil that provides ways to exchange data and execute code between the Python
and Tcl interpreters.

The documentation of tohil is at https://flightaware.github.io/tohil-docs/

A python interpreter (initial version 3.10.5) will be included inside this package and some common modules

numpy 1.23.3 : efficient use of arrays

matplotlib 3.6.1 : to plot graphs

meshio 5.3.4 : to convert between several mesh formats

h5py 3.7.0 : to read/write HDF5 scientific data format

netCDF4 1.6.1 : to read/write netCDF4 scientific data format

debugpy 1.6.3 : to allow debug of Python from VSCode editor in case of embedded Python interpreter

Copyright © 2022, GiD, CIMNE 4

https://flightaware.github.io/tohil-docs/

GiD

Tohil 4.3 documentation

Welcome! This is the documentation for Tohil 4.3. Tohil, a feathered serpent, powerfully joins Python and Tcl.

Parts of the documentation:

What's new in Tohil 4.3? Building and Installing Tohil

Building Tohil on Unix systems such as Linux, MacOS and
Tutorial EreeBSD
start here

Tohil Reference

Meta information:

Reporting bugs Tohil Copyright and License

About the documentation

Other resources

Tohil github repo
FlightAware
Python

TCL

Copyright © 2022, GiD, CIMNE

https://flightaware.github.io/tohil-docs/whatsnew/4.3.html
https://flightaware.github.io/tohil-docs/tutorial/index.html
https://flightaware.github.io/tohil-docs/reference/index.html
https://flightaware.github.io/tohil-docs/installing/index.html
https://flightaware.github.io/tohil-docs/bugs.html
https://flightaware.github.io/tohil-docs/about.html
https://flightaware.github.io/tohil-docs/license.html
https://github.com/flightaware/tohil/
https://flightaware.com/
https://www.python.org/
https://www.tcl-lang.org/

GiD

What's New in Tohil

“What's New in Tohil” describes the big changes between major Tohil versions.

Copyright © 2022, GiD, CIMNE

GiD

What's New In Tohil 4.3

Tohil 4.3 is mostly a maintenance release. One nice improvement, TclProcs now return the tclobj datatype by default. If you haven't seen
them, TclProcs are the slickest way to invoke Tcl procs from Python using tohil. A few releases back we changed tohil.call and tohil.eval to
return Python tclobj objects by default (which can be overridden). Now TclProcs work that way too.

Since tclobjs behave like strings when used as strings in Python, very little if any code, even code that makes extensive use of TclProcs,
should require changes.

Additional Improvements

® Much faster Python-to-Tcl floating point and integer conversions.

® Tohil previously stored a Python capsule containing a pointer to its corresponding Tcl interpreter in __main__.interp and you could make
Python crash by doing like interp = “” before importing tohil. This renames interp to something way less likely to have a conflict.

® Many new tests

Bug Fixes

® Thread state handling improvements aka bug and crash fixes when using Tohil/Python from multiple Tcl interpreters.
® Tohil tclobj integer math is now always performed at 64-bits, even on 32-bit machines.
® Fixed infinite recursion when Tohil's exception handler caused an exception.

Improved Build Support

® configure script improvements to permit building Tohil with nix (https://github.com/flightaware/tohil/pull/65).
® tests can now be run via nix.

For release notes on github, visit the Tohil github repo.

For the full changelog, visit the Tohil github changelog between 4.2.0 and 4.3.0.

Copyright © 2022, GiD, CIMNE 7

https://github.com/flightaware/tohil/pull/65
https://github.com/flightaware/tohil/releases/tag/v4.3.0
https://flightaware.github.io/tohil-docs/whatsnew/hangelog**:https://github.com/flightaware/tohil/compare/v4.2.0...v4.3.0

GiD

What's New In Tohil 4.2

Welcome to Tohil 4.2.

4.2 is primarily a maintenance release, but includes at least one really nice new feature:

Python code passed to tohil::exec is now unindented before being passed to Python

Tohil's #1 new feature request! Up until now, the argument tot ohi | : : exec had to obey Python indentation rules including there being no
indentation at all for the top level, leading to ugly stuff like:

tohil::exec {
def new_validate(self, data):
return json. | oads(base64. b64decode(data))

A The “def” here has to occur at the beginning of the line, i.e. not be preceded by any spaces or tabs, or Python will raise an exception. This
nesting does not “read” well.

To make it easier to make your code read well and comply with Python indentation rules, if the first nonblank line starts with whitespace,
tohil::exec will un-indent the code block such that the first line is not indented at all and following lines are undented to match, all done lickety
split, natively in C.

So you can now nest your embedded Python code in a more standard way:

tohil::exec {
def new_validate(self, data):
return json.loads(base64. b64decode(dat a))

Additional Improvements

® Added - noneval ue optionto t ohi | : : cal | , allowing the “none” sentinel to be specified arbitrarily (Retains the default value of t ohi I :
: NONE.)

® Cleaned up tohil namespace so di r (t ohi |) doesn’t show modules tohil imported as if it had created them.

® Made package forget tohil work.
® Added support for the Tcl unl oad command to be able to unload the Tohil shared library. (Consider it risky, though.)

Bug Fixes
® Fixed crash when register_callback-registered functions raised a Python exception
Improved Build Support

® Added support for building tohil as a Debian package
® Homebrew formula for building with homebrew

Copyright © 2022, GiD, CIMNE 8

GiD

What's New In Tohil 4.1

tclobjs returned from more places

® to=dict conversions now returns tclobjs for the dictionary values.
® tclobj.as_dict() does so as well.

Python-side callback function registration

The new register_callback function provides a nice way to create Tcl commands that directly call corresponding Python functions. This is
useful for processing asynchronous callbacks from the Tcl event loop using Python, and may be useful for other stuff as well.

Several other improvements

® Pass None from Tcl to Python functions called via tohil::call by using the tohil::NONE sentinel.
® More precise error messages when Tohil startup fails should help with troubleshooting installation problems.
® Many new tests.

Numerous bug fixes

Python builtins can be called from Tcl-side tohil::call without resorting to explicitly specifying the builtins namespace.

Fixed bugs in how tclvars (tclobjs bound to vars) handled some methods, such as insert, pop, append, and extend.

Correct behavior of tclobj iterators, also fixes a crash.

If Python is initializing Tcl, it now does so using package require rather than a Tohil_Init to cause Tohil's Tcl package code to get
sourced. (It also requires the exact version of Tohil that it is, to reduce the risk of it loading some other version of the library when
multiple versions are installed.)

Considerably improved documentation

We've considerably improved and extended the Tohil tutorial and reference, in Python-standard RST format, and are serving it out at https://fl
ightaware.github.io/tohil-docs/

Copyright © 2022, GiD, CIMNE 9

https://flightaware.github.io/tohil-docs/
https://flightaware.github.io/tohil-docs/

GiD

What's New In Tohil 4.0

tclobj default return

This is a biggie. Many Tohil functions accept a to= argument where you can specify a Python data type to convert a tcl object returned from
doing a call or accessing tcl data. You can set a return type of str, int, bool, float, list, set, dict, tuple, tohil.tclobj or tohil.tcldict.

Prior to Tohil 4, if you didn’t set a to= return type, the default return type was string, str. This seemed perfectly reasonable; after all, in Tcl,
despite it having internal objects and maintaining in them a cache of a conversion to a data type such as integer, list, etc, in Tcl “every value
is a string.”

However, as we have enhanced and extended Tohil's tclobj type, it has become ever easier to use tclobjs directly from Python with no funny
business. You can get a tclobj's string representation with str(), integer with int(), float with float(), list with list(), and others. You can use
Python list notation to access and manipulate elements of tclobjs when they contain lists, can iterate over them, etc.

Since Tohil's tclobj type implements Python’s number protocol, if tclobjs contain numbers, they can be used in calculations without
conversion via int() and float().

Consequently starting in Tohil 4, the default to return is now tohil.tclobj. In our experience, and a little bit to our surprise, most Python code
that uses Tohil will “just work” without modifications.

If, though, for instance, you didn’t specify a default return and then knowing you would get a str invoked string methods on the str that was
returned, you'll probably get an error because the tclobj doesn’t implement all of the str datatype’s methods. In this case, adding a to=str to
the Tohil call will be sufficient to get your code working under Tohil 4.

Python Subinterpreter Support

Full Python subinterpreter support!

First, starting with version 4, Tohil properly supports multi-phase init, meaning that multiple Python interpreters (the Python interpreter and
any subinterpreters) can import tohil and they will get their own instance of Tohil, so there is no “crosstalk” between the interpreters.

Second, Tohil recognizes when a second Tcl interpreter within the same process has done a package requi re tohil and will create
and exclusively interact with a separate, distinct Python subinterpreter for each corresponding Tcl interpreter.

Say for instance you create a new Tcl interpreter from Tcl, using something like set interp [interp create] andthendo $i nterp
eval "package require tohil",that second interpreter doing the package require causes a new Python subinterpreter to be created
and initialized.

And it works great.

When any of the Tcl interpreters exercises their Python interpreter, Tohil will automatically switch Python’s executing interpreter to that
interpreter (swap its thread state), if needed.

Upon deletion of a Tcl interpreter, if there is an attached Python subinterpreter, it is deleted as well.

Implementation Note: This was pretty tricky, because we previously had global variables, in particular one pointing to the Tcl interpreter. We
had to figure out ways to stash the pointer to the Tcl interpreter in Python using C such that we could find it later when we didn’t have control
over how we were called, for example we are being called from Python with to do some Python thing, you only get what it calls you with. So
we stashed the interpreter pointer in a capsule in Tohil's Python data types’ dictionaries and in __main__'s dictionary. It turned out really
nice.

Support for Separate Virtual Interpreters in Rivet

A nice bit of fallout from the above, if you're running the Apache webserver with the Apache Rivet module installed and running in the mode
where different virtual hosts run in separate Tcl interpreters, known as separate virtual interpreters, each vhost that does a package
require tohil will getits own Python subinterpreter, isolating Python between the vhosts just as Tcl is.

A function can now be specified in a to= arg

The to= argument to a Tohil function such as tohil.eval, tohil.call, etc, has until now been required to specify a Python data type such as int, fl
oat, str, tohil.tclobj, etc. It can now also be specified as a callable function.

If the to argument is not a recognized data type but is a callable function, Tohil will call that function with one argument, a tclobj object
containing the object to be returned, and it is expected that the function will manipulate the object in some way and then return a result.
Whatever the function returns is what the relevant tohil function will return.

This provides an additional way for a Tohil developer to customize the return of some Tcl activity in order to make it more standard and
readily useful to the Python caller.

User-Facing Behavior Changes
® When Tcl is the parent, package require tohil will, in addition to initializing Python, automatically import tohil on the Python side.

Internal Changes

Copyright © 2022, GiD, CIMNE 10

https://tcl.apache.org/rivet/

GiD

® When Tcl is the parent and Tohil initializes Python from scratch, we use Pyl ni ti al i zeEx(0) instead of Py_I ni ti al i ze to prevent
Python from registering signal handlers. (Signal handling probably ought to be Tcl's business under this circumstance.)
® [nternal code refactoring and cleanup.

Documentation Improvements

® Greatly improved documentation in Python-standard format.
® Makefile and docs for building the docs.
®* make serve target to serve the docs via http (for devs)

Copyright © 2022, GiD, CIMNE 11

GiD

What's New In Tohil 3.2

tclobjs

Tohil Tcl objects, tclobjs, are a data type Tohil creates in Python. Tclobjs have gained considerable new power. Among them, they now
implement the number protocol.

This means tclobjs can be used for number in numeric calculations without needing to pass through int() or float().

Testing of tclobjs for boolean value now provides tcl semantics. ‘f', ‘F’, ‘n’, ‘N’, 0, substrings case-insentiviely matching “false” or “no”,
evaluate as false; ‘t', ‘T, 'y’, 'Y’, any number of than 0, substrings matching “true” or “yes”, evaulate true.

Tclobjs can be used as one or both operands for addition, subtraction, multiplication, division, remainder, divmod, bitwise or, and, xor, left
shift, right shift, etc. Unary ops invert, negative, position, absolute value all work.

Tclobjs can be used for “inplace” number calculations such as +=, /=, <<=, etc.
Tclobj iterator code was rewritten from Python into C.

Removed almost all of the as_" methods of tclobjs that convert tclobjs into various Python data types. tclobj.as_int() has been replaced by int
(tclobj), as_bool by bool(), as_float by float(), as_str by str(). llength() has been removed; you can use len() to get the same thing.

Removed tclobj's as_tuple() method; use tuple(tclobj) instead. Likewise removed as_tclobj() method; use tohil.tclobi(tclobj) instead. Remove
as_tcldict() ; use tohil.tcldict(tclobj) instead.

What's cool is these functions are provided by the tclobj type implementation, so that are real efficient in terms of how they interact with the
underlying Tcl objects.

The tclobj.reset() method has been renamed to clear() for consistency with Python lists and dicts. It also works for tcldicts.

Tclobj lappend method has been renamed to append and lappend_list renamed to extend, for compatibility with Python’s lists.

® tclobjs can now ingest python sets (in addition to lists, tuples, etc, which it already could do.)

Tclobj Shadow Vars

Another new feature, Tclobj shadow vars, t = tohil.tclvar(‘t’), makes t a tclobj that shadows a variable t in the Tcl interpreter. Any changes to
the variable from the Tcl side are “seen” from the Python side, and vice versa. The variable can also be an array element.

Tcldicts

® Tcldict objects now provide many methods that standard Python dicts provide, such as keys(), values(), items(). Because of this, dict
(tcldict) now works.

® The clear() method is now supported to empty the Tcl dict.

® A new tcldict pop method behaves the same as pop for standard Python dicts, popping the last item in the list if no position is specified,
else popping the specified position, i.e. removing it from the list and returning it.

® A new .insert(i, X) method will insert item x at position i.

ShadowDicts

ShadowDicts implement many additional methods implemented by standard Python dicts.

ShadowDicts now have a get method that behaves as standard dicts do. A new clear method removes all items from the shadow diction, i.e.
it unsets the shadowed Tcl array.

Python exception improvements
We now raise more standard Python TypeError, KeyError and ValueError exceptions in places where we used to just raise RuntimeError.

Tohil method improvements and changes

Tohil.unset can now take an arbitrary number of arguments of variable names and array elements to unset, include zero. As before, it is fine
to unset something that doesn't exist.

Testing Improvements

® Lots of new tests.

® Also we're now using the hypothesis testing framework and have found and fixed a number of problems because of it.
® All tests pass now on 32-bit ARM Linux.

¢ Linux Cl automated testing using Github Actions

Build Improvements(

Copyright © 2022, GiD, CIMNE 12

https://flightaware.github.io/tohil-docs/whatsnew/3.2.html#build-improvements

GiD

What's New In Tohil 3.0

Welcome to Tohil 3.

Tohil 3 brings forward all the slick stuff from Tohil 2, plus it provides the means of accessing Tcl functions from Python in such a way that
they very much look and behave like native Python functions. Not only that, but for Tcl procs made available to Python by tohil, every
parameter can be specified by position or by name, something few native Python functions or Python C functions can do.

TclProcs

Any Tcl proc or C command can be defined as a Python function simply by creating a TclProc object and then calling it.

>>> jnport tohil

>>> tohil.package_require("Tclx")

'8.6'

>>> jntersect = tohil.TclProc("intersect")

>>> intersect([1, 2, 3, 4, 5 6], [4, 5 6, 7, 8, 9], to=list)
[*4, '5, '"6']

It's pretty fun to play with them this way from the command line.

While TclProcs are directly callable, as seen above, they are fully fledged Python object and have a number of interesting and potentially
useful attributes and method, including the Python function name, Tcl proc hame, whether the Tcl function being shadowed is a proc or not
(if not, it's a command written in C), a Python dictionary specifying any default arguments and their values, and the proc’s arguments.

TclNamespaces

But wait, there’s more. tohil.import_namespace(my_namespace) will create a TcINamespace object and import all the procs and C
commands as methods of that namespace, recursively importing any subordinate namespaces and their procs and C commands as well.
Namespaces and function calls can be chained, so you get the hierarchy of Tcl namespaces and procs and C commands created after
loading all of your packages, chainable from Python.

It's a convenient way to leverage TclProcs across all of your Tcl procs and commands.

>>> jnport tohil

>>> tohil.package_require("clock::rfc2822")

‘0.1

>>> tcl = tohil.inmport_tcl()

>>> tcl.clock.rfc2822. parse_date(' Wed, 14 Apr 2021 12:04:48 -0500', to=int)
1618419888

TclError Exception Class

Tohil 3 also adds a sweet TclError exception class, and any Tcl errors that bubble back all the way to Python without any Tcl code having
caught the error will be thrown in Python as TclError exceptions. The TclError object can be examined to find out all the stuff Tcl knows
about the error... the result, the error code, code level, error stack, traceback, and error line.

New helpers Functions

tohil.package_require is real useful. The others ones tohil needs for itself and they’re not as useful, but maybe for some people for some
purposes.

tohil.package_require(package_name, version=version)

tohil.info_procs() - return a list of procs. pattern arg optional.

tohil.info_commands() - return a list of commands, includes procs and C commands.
tohil.info_body() - return the body of a proc.

tohil.info_default() - return the default value for an argument of a proc

tohil.info_args(proc) - return a list of the names of the arguments for a proc
tohil.namespace_children(namespace) - return a list of all the child namespaces of a namespace

Tests

® Dozens of new tests.
* “make test” runs both the Python ones and the Tcl ones

Copyright © 2022, GiD, CIMNE 13

GiD

The Tohil Tutorial

Copyright © 2022, GiD, CIMNE

14

GiD

1. The Tohil Tutorial

Tohil is simultaneously a Python extension and a TCL extension that makes it really seamless to move data around and invoke functions in
one from the other.

Tohil is open source software, available for free including for profit and/or for redistribution, under the permissive 3-clause BSD license (See
_copyright-and-license).

It is written in C, Python and Tcl, and makes use of the Python and Tcl C APIs to let Python call Tcl, Tcl call Python, give Python access to
Tcl's objects and give Tcl access to Python's objects.

Not just strings and ints and float, but lists, dicts, sets, tuples, and more, flow freely, intuitively and largely unencumbered between the two
languages.

Tohil is efficient when moving data between the languages. Integers and floats are copied natively; they do not suffer an intermediate
conversion through strings. Likewise lists, tuples, dicts, etc, are accessed through the C language mechanisms provided by the two
languages, ergo accessed and manipulated in the most native and efficient ways.

Tohil is freely available in source form from the Tohil github website, https://github.com/flightaware/tohil , and may be freely distributed.
This tutorial is intended to provide an introduction to Tohil, and typical ways of using it.

To follow along and start experimenting with Tohil you'll want to have working Python and Tcl interpreters, and have Tohil built and installed
such that import tohil works from Python and package require tohil works from Tcl.

Copyright © 2022, GiD, CIMNE 15

https://github.com/flightaware/tohil

GiD

2. Using Tcl from Python

Here we'll introduce using Tcl from Python.

Hopefully you've got Tcl and Python and Tohil installed and you can follow along and try stuff out.

2.1. tohil.eval

>>> jnport tohil
>>> tohil.eval ("puts "Hello, world."")
Hel l o, world.

Not bad. You can actually do a lot with that.

Anything the Tcl code returns can be gotten by Python.

>>>t = tohil.eval (‘return "Hello, world."")
>>> t

<tohil.tclobj: '"Hello, world."'>

>>> str(t)

"Hello, world.'

Here we'll use Tcl's clock format function to format a Unix epoch seconds-since-1970 clock into a Posix standard time in the Spanish locale:

>>> clock = 1616182348
>>> tohil.eval (f"clock format {clock} -locale es -gnt 1")
‘vie mar 19 19:32:28 GMI 2021

2.2. helper functions

We can load in Tcl packages by doing

>>> tohil.eval (' package require Tclx")

but we do this so often that tohil provides a shortcut:

>>> tohil.package_require(' Tcl x")

You can specify the version as an optional argument, either by positional or named parameter. The following two statements are equivalent:

>>> tohil.package_require(' Tclx', '8.6")
>>> tohil.package_require(' Tcl x', version='8.6")

Experienced Python developers without a lot of Tcl experience may be surprised by Tcl's leniency when it comes to data types.

Here we request a Tcl package with the version number specified as floating point. It works fine.

>>> tohil.package_require(' Tclx', 8.6)

Another one you'd end up doing alotist ohi | . eval ("source file.tcl").Forthatwe provide the slightly less paper-cutty...

>>> tohil.source("file.tcl")

Copyright © 2022, GiD, CIMNE 16

GiD

2.3. tohil.call

You get fancy and start using f-strings to create Tcl commands with arguments, maybe you're doing something like

tohil.eval (f"register_user {user_id} {user_nane} {user_fullnane}")

If any of those variables being substituted contain dollar signs, quotes, or square brackets, you’re not going to have a good time, because
Tcl is going to try to interpret that stuff, and that could lead to errors up to and including remote code execution.

Consequently, Tohil provides tohil.call, a function that takes an arbitrary number of arguments and passes them one-for-one to the
corresponding Tcl function in a way that keeps Tcl from trying to interpret any of the arguments.

>>> jnport tohil

>>> clock = 1616182348

>>> tohil.call('clock', 'format', clock, '-locale', '"fr")
'ven. mars 19 19:32:28 UTC 2021

The key thing in the above istohi | . call (' clock', 'format', clock, '-locale', 'fr'),equivalenttotohil.eval (f"
clock format {clock} -locale fr") butwithout the risk of inadvertent misinterpretation of arguments.

2.4. tohil.expr

You can also evaluate Tcl expressions from Python using tohil.expr. As with many other tohil functions, to= can be used to request
conversion to a specific Python datatype.

>>> tohil.expr('5+5")

10
>>> tohil.expr('5**5")
' 3125

>>> tohil.expr('1/3")
o

>>> tohil.expr('1/3.")

' 0. 3333333333333333

>>> tohil.expr('1/3.",to=float)

0. 3333333333333333

>>> tohil.expr('[clock seconds] % 86400')

' 25571'

>>> tohil.expr('[clock seconds] % 86400',to=int)
25571

2.5. tohil.getvar and tohil.setvar

Python has direct access to Tcl variables and array elements using tohil.getvar. Likewise, tohil.setvar can set them.

>>> jnport tohil

>>> tohil.setvar("foo", "bar")
>>> tohil.getvar("foo")
" bar'

>>> tohil.setvar(var="happy", value="Ianmp")
>>> tohil.getvar("happy")
"I anp'

>>> tohil.eval ("array set x [list al1lb2c 3d4]")

>>> tohil.getvar('x(a)'")

Cq
>>> tohil.getvar('x(a)', to=int)

1

>>> tohil.getvar(var="x(b)', to=float)
2.0

>>> tohil.getvar("x(e)")

Traceback (nost recent call last):
File "<stdin>", line 1, in <nodul e>

NaneError: can't read "x(e)": no such elenent in array

As you can see, it's an error to try to get a variable or array element that doesn’t exist. You can use tohil.exists to see if the variable exists, or
trap the Python exception, or make use of tohil.getvar’s handy default keyword-only argument:

Copyright © 2022, GiD, CIMNE 17

GiD

>>> tohil.getvar("x(e)", default="0")

0
>>> tohil.getvar("x(e)", default=0, to=int)
0
>>> tohil.getvar("x(d)", default=0, to=int)
4

2.6. tohil.exists

You can use tohil.exists to see if a variable or array element exists:

>>> tohil.eval ("array set x [list a1 b 2c 3d4]")
>>> tohil.exists("x(c)")

True

>>> tohil.exists("x(e)")

Fal se

>>>

>>> tohil.exists("banana")

Fal se

2.7. tohil.incr

tohil.incr takes a Tcl variable name or array element and attempts to increment it.

If the contents of the variable preclude it being used as an int, a Python TypeError exception is thrown.

An optional position argument specifies the amount to increment by. The default increment is 1. Negative increments are permitted. The

increment amount can also be specified as a keyword argument, using “incr”.

tohil.incr('var')
tohil.incr('var',2)
tohil.incr('var',incr=-1)

2.8. tohil.unset

tohil.unset can be used to unset variables, array elements, and even entire arrays in the Tcl interpreter.

>>> tohil.setvar("x(e)", "5")
>>> tohil.getvar("x(e)")
L5

>>> tohil.unset("x(e)")
>>> tohil.getvar("x(e)")
Traceback (nost recent call last):
File "<stdin>", line 1, in <nodul e>
NaneError: can't read "x(e)": no such elenent in array

® Unset takes an arbitrary number of arguments, including zero.

® Unsetting an array element uses Tcl subscript notation, for example t ohi | . unset (' x(e)"').
® Unsetting an array by name without a subscript will unset the entire array.

® |tis not an error to attempt to unset a variable that doesn'’t exist.

2.9. tohil.subst

Tcl's subst command is pretty cool. By default it performs Tcl backslash, command and variable substitutions, but doesn’t evaluate the final
result, like eval would. So it's handy for generating some kind of string, but with embedded $-substitution and square bracket evaluation.

>>> jnport tohil
>>> tohil.eval ("set nanme karl")

"karl!'
>>> tohil.subst("hello, $nanme")
"hello, karl'

2.10. tohil.convert

Copyright © 2022, GiD, CIMNE

18

GiD

tohil.convert will convert some Python thing passed to it, into a Tcl object, and then back to some other Python type, any type supported in
accordance with the to= argument.

The “to=" way of requesting a type conversion is supported. Although you might not care about converting to int or float or something, you
might want a tohil.tclobj for your efforts, anirite?

2.11. tohil.interact

Run the Tcl interactive command loop on stdin, hopefully a terminal, until you send an EOF, at which point you'll be returned to the Python
command line. See also tohil::interact.

THis is handy if you're using Python interactively and you find yourself making a lot of tohil.eval calls to manipulate the Tcl interpreter, you
can flip to the Tcl interpreter, interact with it directly, then flip back by sending an end-of-file.

2.12. tohil.tcl_stdout_to_python()

Redirect Tcl's standard output to pass through Python’s 1/O subsystem.

Among other things, if using Jupyter Notebook, invoking tohil.tcl_stdout_to_python() will cause output from the Tcl interpreter to appear in
the notebook.

tclvar

Copyright © 2022, GiD, CIMNE 19

https://https//jupyter.org

GiD

3. Using Python From Tcl

In this section we’ll introduce using Python from Tcl.
Hopefully you've got Tcl and Python and Tohil installed and you can follow along and try stuff out.

Let’s fire up Tcl and mess around with Python:

$ tclsh
% package require tohil
4.0.0

OK, good news, we've got a working Tcl and Tohil.

If the package-require failed then please visit the installation instructions and get tohil built and installed on your computer.

3.1. tohil::eval

% tohil::eval "37 + 5"
42

That may not look like much, but Tohil got Python to add 37 and 5 for us and returned the result back to tcl.

% set answer [tohil::eval "37 + 5"]
42

% puts $answer

42

3.2. tohil::exec

In Python, eval evaluates a single expression and returns the result, so even trying to eval something like answer = 42 is an error. Python
provides exec, which can evaluate an aribtrary code block, and Tohil hews to that by providing tohil::exec.

% tohil::exec "answer = 37 + 5"
% tohil::exec "print(answer)"
42

OK, that's pretty cool. Tohil is getting Python to do stuff for us from Tcl. Yay.
(A quick note, tohil::eval and tohil::exec are named and work the way Python’s eval and exec work. Tcl has its own eval for evaluating Tcl

stuff. It is for Tcl something closer to Python's exec, except that Tcl's eval returns a result, while Tcl's exec runs programs and returns their
output, something much different.)

Y%expr 5/ 4

1

%tohil::eval "5/ 4"
1.25

%tohil::eval "5 // 4"
1

Y% expr 5// 4

m ssing operand at _@

in expression "5 /_@/ 4"
whil e evaluating expr 5 // 4

Yep, it's Python we're talking to, all right. See how Tcl division of two integers yielded an integer result while Python, a float? Then we used
Python’s integer division // to get integer division, while trying that with Tcl was an error because Tcl doesn’t have that operator.

3.3. tohil::import

OK, we can start doing Python stuff from Tcl, like import a module.

% tohil::exec "inport nunpy"

Copyright © 2022, GiD, CIMNE 20

GiD

We do this often enough that Tohil provides a shortcut:

% tohil::inmport nunpy

3.4. notes about exec

One thing that can trip people up is it can be surprising that tohil::exec never returns anything.

% tohil::exec "answer = 42"
% tohil::exec "answer"

The above returns without an error, but doesn’t provide anything.
You instead need to use tohil::eval in this example. You can call functions using tohil::eval, by the way.

Though possibly a bit surprising, this behavior is consistent with how exec works in Python. It probably shouldn’t be a surprise that Tohil is
using Python’s eval and exec mechanisms at the C level to provide these capabilities to Tcl.

3.5. tohil::run

tohil::irun is a special version of tohil::exec that grabs anything Python emits to stdout while the exec is running, and returns it to the caller.

3.6. tohil::call

If you start creating from Tcl, Python to be executed with eval and exec, you may notice there’s a risk that if you use substitute-in data, you
know, such as names, addresses, cities or whatever, that unless you are very careful, various characters can cause your Python not to
parse properly. For example, a single quote in a name, quotes in general, and other stuff.

Tohil provides tohil::call to provide a way to call a Python function while making sure that the arguments you pass to the function are not
interpreted by Python along the way.

tohil::call provides a way to invoke one Python function, with zero or more arguments, without having to pass it through Python’s eval or
exec and running the risk that Python metacharacters appearing in the data will cause quoting problems, accidental code execution, etc.

When you use tohil::call, Tohil converts all of your arguments to Python Unicode, unless an argument is comprised of a special sentinel,
normally tohil::NONE, in which case that argument is replaced by the Python “None” data type.

This sentinal can be changed with the -nonevalue argument.

3.7. tohil::interact

Take tohil to eleven. You're on ten here... all the way up... You're on ten on your guitar... where can you go from there? Where? Nowhere.
Exactly. What we do is if we need that extra... push over the cliff... you know what we do?

We run tohil::interact from Tcl and enter the Python interactive loop. When we're done, we send end of file (*D) to end the Python loop and
return to the Tcl one.

% tohil::interact

>>> def foo():
print("bar")

>>> AD

% tohil::eval foo()

bar

3.8. Using tohil from Rivet

Apache Rivet is an Apache webserver module that provides among other things a way for webpages to be made from HTML files with
embedded Tcl code that executes when the page is requested.

From a Rivet page, in some of your Tcl code, invoke package require tohil.

If you run tohil_rivet it will plug tohil's Python interpreter such that everything Python writes to stdout using print, or whatever, will go through
Tcl's stdout and thereby into your Rivet page.

Copyright © 2022, GiD, CIMNE 21

https://flightaware.github.io/https://tcl.apache.org/rivet/

GiD

<?

package require tohil; tohil_rivet

puts "calling out to Python to add 5 + 5:
tohil::exec {

print('hello, world")
print("<hr>")

?>

Copyright © 2022, GiD, CIMNE

[::tohil::eval

"5 4 5"]"

22

GiD

4. Tohil's Tclobj Python Data Type

To provide powerful and facile interactions between Python and Tcl, Tohil provides a new Python data type, the Tcl object, or tclobj, aka tohil.
tclobj.

It's a Python-wrapped Tcl object.

It's pretty insanely powerful.

See, Tcl has these objects, fairly similar to Python at the C level, that it uses throughout.

They can be a string or an int or a float or a list or a nested dictionary or a bunch of other things.

Each tclobj maintains a pointer to a Tcl object and can do things to and with that Tcl object.

4.1. Creating Tclobj Objects From Python

You can create an empty tclobj just like creating any other object from a class in Python:

t = tclobj()

Something pretty cool is you can pass many different Python data types, including lists and dicts, to tohil.tclobj, and it will and it will pretty
much “do the right thing,” i.e. it will produce something expected and straightforward that Tcl can make sense of.

For example you can pass tclobj() None, bools, numbers, bytes, unicode, sequences, maps, and even other tclobjs.

4.2. .getvar() and .setvar() methods

You can also attach a tclobj to a Tcl variable or array element, or set a variable or array element from the contents of the tclobj using its getva
r() and setvar() methods.

4.3. Get stuff from tclobjs as Other Python Objects

Tclobjs have methods to convert the tclobj to Python strings, ints, floats, bools, lists, sets, tuples, dicts, byte arrays, and, again, tclobjs.

bool(t) - Return the contents of the tclobj object as a Python bool
float(t), int(t) - as a python float and int (long), respectively.

list(t) - as a python list

str(t) - as a python str

tuple(t) - as a python tuple object

tohil.tclobj(t) - as a new python tclobj object

tohil.tcldict(t) - as a new python tcldict object

t.as_byte_array() - a Python byte array

t.as_dict() - a Python dict

4.4. set() and reset()

t.set() tries to covert whatever Python object is passed to it and store it in the tclobj as a Tcl object, while t.reset() resets the tclobj object to
contain an empty Tcl object.

4.5. incr()

t.incr() tries to increment the tclobj object. If the contents of the object preclude it from being used as an integer, a TypeError exception is
thrown.

t.incr takes an optional positional argument, which is the increment amount. It can also be specified using the “incr” named argument.

= tohil.tclobj(0)
.incr()

.incr(1)
.incr(incr=-1)

- - . -

4.6. Tclobjs Containing Tcl lists

When a tclobj contains Tcl lists, cool stuff comes into play.

Accessing a tclobj containing a list from Python is nearly identical to accessing a standard Python list. You can access and change
elements, use slice notation, etc, and most standard Python list methods are provided as well.

You can get the length of the tclobj list with len(obj), while obj.lindex(i) will return the i'th element.

Copyright © 2022, GiD, CIMNE 23

GiD

You can also justuse | [i] to get the i'th element of |, although the lindex supports Tohil's to=type conversion as well.
obj.append() will append to the list stored in the tclobj.

obj.extend() will append a Tcl object comprising a list, or a Python list, to a list, making it flat, i.e. each element of the list is appended to obj's
list.

obj.pop(x) will pop the x’'th element from a tcl obj comprising a list. If no index is specified, obj.pop() removes and returns the last item in the
list.

obj.insert(i, x) will insert item x at position i. So as with Python lists, obj . i nsert (0, x) inserts at the front of the list, and a. i nsert (| en
(a), x) isequivalentto obj . append(x)

obj.clear() removes all items from the list.

You can use Python'’s indexing syntax to access and replace list elements.

>>> x = tohil.eval ("list 1 2 3 45 6", to=tohil.tclobj)

>>> X

<tohil.tclobj: '1 23 45 6>
>>> X[2]

Y

>>> X[3:]

[+4, '5", '"6']

>>> x[-2:]

['5, 6]

>>> x[-2:-1]

['5]

4.7. Comparing Tclobjs wo Each Other

Tclobjs can be compared. If equality check is requested, first their internal tclobj pointers are compared for absolute equality. Following that,
and for all other cases (<, <=, >, >=), their string representations are obtained and compared.

Not something you probably should rely on for complicated objects but should be fine for simple ones.
Comparisons are really permissive, too, in what the tclobj implementation accepts from Python.

It seems pretty good, but this is new stuff, so be careful and let us know how it's going.

4.8. Get the tclobj's Tcl Type and Reference Count

t._tcltype will tell you the tcl object type of the tcl object stored within the tclobj. Note that you may get nothing back even though there is
some valid thing there, say for instance a dict, but you haven't accessed it as a dict, so it's just a string or list or some other data type until
you do.

t._refcount will tell you the reference count of the tclobj’s tcl object. This isn't probably useful for production code but it is kind of cool for
poking around and trying to understand what objects are shared and how and when and stuff.

t._pyrefcount likewise will return the python reference count of the tclobj.

Note that if you're poking around, that sometimes you might think the reference count is one higher than it should be, but frequently the
object you just set the value of also happens to be the Tcl interpreter result (i.e. you used the interpreter to make it). Once the interpreter
does something else and produces a new result, your object’s reference count will go down by one.

If this doesn’t make sense, don’t worry about it. You probably don't need it and don'’t care anyway.

You can create a tclobj from most Python stuff.

...alist:
>>> | =[1, 2, 3, 4, 5]
>>> type(l)
<class "list'>

>>> kIl = tohil.tclobj(l)
>>> str(kl)

'12345
>>> kl . |1l ength()
5

...atuple:

>>> z = tohil.tclobj((1, 2, 3))
>>> str(z)
‘123

Copyright © 2022, GiD, CIMNE 24

GiD

...adict:

>>d={"a: 0, 'b: 1,
>>> z = tohil.tclobj(d)
>>> str(z)
‘a0Oblc2dd

Copyright © 2022, GiD, CIMNE

et

2,

td'

3}

25

GiD

5. Tohil’s Tcldict Python Data Type

Tcldicts are Python-wrapped Tcl dictionaries.

While they have the same internal structure as tclobjs (a Python object pointing to a Tcl object), tcldicts are a distinct data type in Python
because tcldicts have different implementations of sequences and maps and whatnot, to provide a Pythonic feel to Tcl dictionaries, which
can also be hierarchies of key-value data.

You can create a tcldict object similarly to creating a tclobj:

>>> d = tohil.tcldict("alb2c3d4eb5")

5.1. Accessing Elements in a Tcldict

You can access elements using normal Python dict access techniques.
For instance, d[“a"] returns 1, d.get(‘a’) does the same. With the “get” approach you can specify a to=type to control what Python type is
returned. Also you can set the Python type returned by doingd.to = type.

5.2. Setting Values into a Tcldict

Setting values will do a Tcl dict set on a tcldict. It takes a key and a value. The value can be one among a number of different Python
objects. Two options are to pass a tclobj or tcldict object, in which case tohil will do the right thing and grab a reference to the object rather
than copying it.

The key can be a list of keys, in which case instead of working with dict as a single-level dictionary, it will treat it as a nested tree of
dictionaries, with inner dictionaries stored as values inside outer dictionaries.

d[['airport', "KHOU, 'name']] = 'Houston Hobby' d[['airport', '"KHOU, 'lat']] = 29.6459 d
[["airport', "KHOU, 'lon']] = -95.2769 °

Standard Python dicts can't do this.

The td_get method will also do a dict get on a tclobj. It returns the object in the style requested, tclobj by default, but to= can be specified, as

in:
>>> x = tohil.eval("list a1 b 2 c 3", to=tohil.tcldict)
>>> x.get('a')
<tohil.tclobj: "1'>
>>> x.get('a',to=int)
1
5.3. get()

Likewise, get will accept a list of keys, treating the Tcl object as a nested tree of dictionaries, with inner dictionaries stored as values inside
outer dictionaries. It is an error to try to get a key that doesn’t exist.

t.get() supports our to=datatype technique to get the contents of the tcldict as one of a number of different datatypes (the same ones
supported for tohil.getvar, etc.)

One kind of annoyance about Tcl dicts is having to use dict exist to traverse the hierarchy of dicts to see if something exists before
traversing it a second time to actually get it, or to try the get and catch the error.

get() offers a nice alternative approach, where you invoke it and specify the optional default= argument, where you can specify a value that g
et will return if the requested key doesn't exist.

If a to=datatype is specified and the default value is used, Tohil will coerve the default value to the to-specified datatype, if possible, or an
exception is raised if not.

5.4. Checking for Existence
You can do the usual Python' a' in mydi ct check for existence.

The thing being checked for can be a list, in order to navigate a hierarchy of Tcl dictionaries. For example, ["ai rport", "KHOU'] in
mydi ct

5.5. len()

len(t) returns the size of the Tcl dict, or throws an error if the contents of the object can’t be treated as a Tcl dict.

5.6. Removing Elements

Copyright © 2022, GiD, CIMNE 26

GiD

Standard del t[key] Python stuff.

td_remove can also accept a list of elements and in that case it will delete a hierarchy of subordinate Tcl dictionaries. In the list case, if more
than one element is specified in the list, it is an error if any of the keys don't exist.

5.7. Assembling Tcldicts from Tcldicts and Tclobjs

You can create new tclobjs or tcldicts as the contents of sub-parts of dictionaries and use them as dictionaries in their own right, or whatever.

Say you have a tcldict t containing a dictionary of elements, one of which, a, contains a dictionary of elements, one of which, ¢, contains a
dictionary of elements, d.

If you want a dictionary consisting of eveyrthing below c, you might do

x =t[['a, 'b, 'c]]

...or...

x
|

=t.get(['a,"b","'c'], to=tohil.tclobj)

Likewise you can compose more complicated dictionaries by attaching a dictionary to a point within another dictionary, simply by assigning a
tclobj or teldict that itself contains a dictionary.

5.8. iterators

You can iterate over a tcldict with normal Python semantics.

For example, something like:

>>>t = tohil.tcldict("falb2c3d4eb5f 6")
>>> for i int:

print(i)

If you pass a to= conversion to iter, the iterator returns tuples comprising the key and the value as well, with the value converted to the to=
conversion.

for key, value int.iter(to=int):
print(f“key {key} value {value}")

Copyright © 2022, GiD, CIMNE 27

GiD

6. TclProcs

TclProcs brings the integration of Tcl functions into Python to a new level of transparency, simplicity and versatility. Using TclProcs, Most Tcl
procs now look and behave just like Python functions in most cases.

Using Tcl's introspection capabilities, tohil traverses a hierarchy of Tcl namespaces, identifying all the procs and C-commands in each one,
and for the procs, sussing out their arguments and default values, and stashing it so that we can create entrypoints for all of the Tcl procs in
Python to invoke Tohil's trampoline function to call the Tcl proc and return the result.

It's awesome!

While tohil can’t determine arguments and defaults for Tcl commands that are implemented in C, Tohil still makes entrypoints for them,
making them available from Python. Since many Tcl commands and extensions are implemented in C and provide their functionality with a
hybrid of Tcl procs and C commands, wrapping the C functions can be important for providing a way for Python to have access to everything
such a package provides.

tohil.inport_tcl () returns a TcINamespace object corresponding to whatever namespace you point it at (“::" is a good one), and all of
the procs and commands found in that namespace are defined as methods of the TcINamespace object, and can be executed as such
methods. It's very natural and pythonic.

This means you can do stuff like:

i mport tohil
k = tohil.inport_namespace("::")

...and then invoke top level procs like k.intersect3(). And you can chain namespaces.

>>> tohil.package_require("Tclx")

>>> k = tohil.inmport_tcl()

list1 ["a", "b", "c*, “d", "e", "f"]

listl ["d", "e", "f", "g", "h", "i"]

a_only, in_both, b_only = k.intersect3(listl, list2, to=tuple)

And the subordinate namespaces are created in there too, and they’re chainable too.

k.clock(' format', k.clock("seconds", to=seconds), "-format", "9 %", "-gnt", 1)

Copyright © 2022, GiD, CIMNE 28

GiD

7. Shadow Dictionaries

Shadow Dictionaries, aka ShadowDicts, create a Python dict-like object that shadows a Tcl array.
Tcl arrays are basically the Tcl equivalent of Python's dicts, by the way.
Let's assume we have an array x in Tcl that we want to shadow as a dictionary x in Python, we would write X = t ohi | . ShadowbDi ct (" x").

If you just specify a variable name without any namespace qualifiers, the array references the current Tcl execution frame, like if a Tcl proc
had called Python and in our Python we did the x equals thing for a shadow dict then the x array would exist in the proc’s frame. In other
words, the array is local to the caller on the Tcl side.

If we're invoking it not from Tcl code called from Python, just from Python or the top level of Python or whatever, then x is in the global (“::")
namespace. You can always provide namespace qualifiers to identify the global or some subordinate namespace, like “::cryptolib::x”

Once created, shadowdict elements can be gotten as a string using str() or print(), etc.

Elements can be read form the Python side using dictionary notation, for example x['d’], set in a standard way (x['€’] = ‘5’), and deleted in a
standard way using del (del x['e’]). Also you can iterate on the keys as with dicts.

Changes made from the Python side occur on the Tcl side, and all accesses, traversals, etc, are made using the actual Tcl array. In other
words, ShadowDicts never cache values from the Tcl array on the Python side.

In the example below we set up a Tcl array, create a ShadowDict of it in Python, get a string representation of the dict, read from the dict,
insert into it, delete from it, and demonstrate that the changes we made are present on the Tcl side. Finally, it iterates over the shadow dict,
showing the same keys from Python that Tcl was shown to have.

>>> tohil.eval ("array set x [list alb2c 3d4]")
<tohil.tclobj: "'>

>>> x = tohil.Shadowhi ct ("x", to=int)

>>> X
{"d:
>>> x|
4

>>> x[*
>>> X[
5

>>> del x['d']
>>> tohil.eval ("parray x")
x(a) 1

x(b)
x(c)
x(e)
<tohil.tclobj: "'>
>>> for i in x:

print(i)

‘e': 'S5, 'a': "1, 'b': 2", 'c': '3}

an

d]
='5

o ®

]
]

2
3
5

© 0T

ShadowDict support many of the capabilties of regular python dicts. For example, len(x) will return the length of the shadow dict i.e. the size
of the shadowed Tcl array.

x.keys() return the keys, x.values() returns the values, and x.items() returns the keys and items as a list of two-element tuples. However,
unlike regular Python dicts, they are not mutable, i.e. if you have captured a reference to x.keys() the contents of x.keys() does not change
when the corresponding dict is changed.

x.get(key) will return the element of the array indexed by key if it exists, else it will raise a KeyError exception. However if a named
parameter, default, is specified with a value, in the event key is not found in x, the default value will be returned instead.

Finally the to= named parameter can be used to specify a Python return type such as list, set, dict, int, float, str, tohil.tclobj, tohil.tcldict, etc.

x.pop(key), if key is in the shadow dictionary, removes it and returns it. A default value can be specified as an optional second argument. If a
default is not specified and the key is not in the dictionary, a KeyError exception is raised. As with so many other functions, the to= named
parameter can be specified to state what data type you want the data returned to Python as.

Copyright © 2022, GiD, CIMNE 29

GiD

Tohil Reference

This library reference manual describes the library that is Tohil.

Copyright © 2022, GiD, CIMNE

30

GiD

Tohil Introduction

This reference describes Tohil, the Python module and Tcl package that are two great tastes that taste great together.
Tohil provides ways to exchange data and execute code between the Python and Tcl interpreters.

Python executes Tcl code using tohil.eval and tohil.call, and some minor variants.

Tcl executes Python code using tohil::eval, tohil::exec, and some variants.

Tohil's tclobj and tcldict Python type objects provide Python access to Tcl's native objects. Tclobjs and tcldicts behave in a very Python-like
way. For instance, tclobjs can be used as numbers in calculations (if they contain valid numbers), treated as lists and accessed using
familiar Python list syntax and methods, be automatically constructed by ingesting familiar Python data types, including recursive ingestion
of lists, dicts, tuples, sets, etc.

Meanwhile, uncaught Tcl errors resulting from Tcl code invoked from Python are propagated back through Python as TclError exceptions,

while uncaught exceptions raised from Python code invoked from Tcl are propagated back through Tcl as a Tcl error, the traceback
interspersing Tcl and Python as the error/exception unwinds.

Copyright © 2022, GiD, CIMNE 31

GiD

Tohil Python Functions

Tohil has a number of functions and data types that it provides when the tohil package has been imported.
tohil.alias(name, callback)

Identical to register_callback and under consideration to replace it as the command used to alias Tcl commands to Python commands,
although backwards compatibility would be maintained.

tohil.call(* args|, to=type])
Invoke a Tcl command while specifying each argument explicitly, and returns the result.

Using tohil.call, even if some arguments contain Tcl metacharacters such as dollar sign, backslash, and square brackets, Tcl will not
evaluate them.

Zero or more arguments can be specified. If one or more arguments are specified, the first argument is the command name (which could be
the name of a proc or a Tcl C function or whatever), and whatever additional positional arguments are passed as arguments to the
command.

If no arguments are specified, that's legal for Tcl. The Tcl interpreter will evaluate an empty string, and return an empty result.

The optional to= named parameter can specify a Python data type to return, such as str, int, float, bool, list, set, dict, tuple, tohil.tclobj, tohil.
teldict, or a function that takes one argument and returns a result.

If the evaluation results in a Tcl error and the error is not caught by inline Tcl code using Tcl's try or catch, that is to say if an uncaught Tcl
error is received by Tohil from the attempt, Tohil uses information about the Tcl error to create, populate and raise a TclError exception to
Python.

tohil.convert(python_object[, to=type])

Convert some Python object into a Tcl object and then convert back to a Python object, a tohil.tclobj by default, but it can be converted to
any optional to= destination type or be passed through a to= function.

tohil.eval([tcl_code=]code[, to=type])

Given a string of valid Tcl code, including at the caller’s discretion multiple statements separated by semicolons, or multiline blocks, evaluate
tcl_code using the Tcl interpreter, and return its result, by default as a tohil.tclobj data type.

As with tohil.call, above, if the evaluation results in an uncaught Tcl error, Tohil will construct and raise a TclError exception to Python.
tohil.exists([var=]varString)
Returns True if the variable named by varString exists, or False if it doesn't.

varString can be an element of a Tcl array by using Tcl array notation, for example ‘airports(KHOU)’, and tohil.exists will return based on the
existence of the specified element in the specified array.

tohil.expr([expression=]exprString[, to=type])

Evaluate exprString as a Tcl expression, and returns the result.

The optional to= named parameter can be supplied to specify one of the supported Python data types or functions.
tohil.getvar([var=]varString, to=tohil.tclobj[, default=defVal])

Get a Tcl variable or array element and return it to the caller.

The variable is accessed from the current Tcl context, which may be global.

The name of the variable or array element is in varString.

varString can include namespace qualifiers to ensure a reference is global or to explicitly access a variable within a specific namespace.
The optional to= named parameter can be supplied to specify one of the supported Python data types or functions.

An optional default value can be specified using the default= named parameter. If a default value is specified and the specified variable or
array element doesn't exist in the Tcl interpreter, the default value will be returned instead. default=None is a valid default value and is
distinct from not providing a default value.

If the variable doesn't exist and a a default value was not provided, Tohil will raise a Python NameError exception.
Note that default values are coerced to the to= data type, a tohil.tclobj by default.

tcl = tohil.import_tcl()

Using Tcl's introspection capabilities, traverse all Tcl namespaces, and identify all procs and C commands in each one.
Create a hierarchy of TcINamespace objects returning the top-level namespace object.

For each proc, suss out its arguments and default values, if any, and attach, to each namespace, entrypoints for each proc and C command
so that calling the Tcl procs looks very much like calling any Python function.

tohil.incr([var=]JvarName|, [incr=]increment])

Copyright © 2022, GiD, CIMNE 32

GiD

Take a Tcl variable name or array element as specified by the varName string, and attempt to increment it.

The optional increment amount can be specified positionally or using the incr= keyword. Its value is 1 by default. The increment amount can
be negative.

If the variable doesn't exist, it is created and set to the increment amount.
If the contents of the variable preclude it being used as an integer, Tohil will raise a Python TypeError exception.
tohil.interact()

Run the Tcl interactive command loop on stdin, which hopefully is a terminal, until the user sends EOF, at which point they’ll be returned to
the Python command line, or whatever the Python code that called tohil.interact() does next.

tohil.package_require(packageNamel[, [version=]versionID])
Load the specified package. A specific package version can be specified, either positionally or by name using the version= parameter.

This is a shortcut for t ohi | . eval (f" package require {packageNane} {versionlD}") ortohi..call ("package",
"require", packageNanme, versionlD).

tohil.register_callback(name, callback)

Create a Tcl command with the given name linked to the given Python callable. When the Tcl-side command is invoked, tohil will directly
invoke the corresponding Python function, passing along any arguments. This is useful in cases where the Tcl event loop is being used to
execute code asynchronously and you want to handle the callbacks using Python, but in general allows a Python function to be made
directly callable as a Tcl function.

tohil.result([to=type])
Return the Tcl interpreter result object.
The Tcl interpreter has a “result object.” It contains the result of the last thing the interpreter did.

It's not something you would likely normally need to access, because you would have gotten the result by doing something like set
nyResult [nyFunction nyArgl nyArg2].

Nonetheless we make it available because it's been useful for the Tohil devs to be able to see what'’s in there.
tohil.run()

Perform tohil.exec, but redirect stdout emitted while python is running it into a string and return the string to tohil.run’s caller after the exec
has finished.

Python users are often surprised that exec doesn’t return anything.
tohil.setvar([var=]JvarName[, [value=]value)
Set a variable or array element referenced by varName to the value specified by value.

A few errors are possible, such as trying to set an array element of a scalar variable or set a scalar variable that is actually an array. Tohil
raises these as a Python RuntimeError exception.

tohil.source(fileName)

Take the contents of the file specified by fleName and evaluate it using the Tcl interpreter. The return value is the value of the last command
executed in the script.

This is the equivalent of t ohi | . cal | ("source", fil eNane).
tohil.subst(substString)
Perform Tcl backslash, command and variable substiutions, and return the result of doing that without evaluating it.

This is handy for generating some kind of string while substituting parts of it with embedded $-substitutions of Tcl variables and evaluation of
Tcl code enclosed in square brackets.

See also the Tcl “subst” manual page.
tohil.tclvar([var=]JvarName)
Create a tclobj object that shadows a Tcl variable or array element.

Any accesses of the resulting tclobj from Python will always begin with a (noncopying) access of the Tcl variable or array element’s contents,
and any writing of the variable from Python (by doing things with the tclobj such as invoking methods on them, using Python list notation to
update tclobyj list elements, etc.) will likewise store the value into the corresponding variable or array element in the Tcl interpreter.

tohil.unset(*args)
tohil.unset is used to unset variables, array elements, and even entire arrays in the Tcl interpreter.
Zero or more arguments specify names to unset.

Unsetting an array element uses subscript notation, for example x(e).

Copyright © 2022, GiD, CIMNE 33

GiD

Unsetting an array by name without a subscript will unset the entire array.

It is not an error to attempt to unset variables, arrays and array elements that don't exist.
tohil.tcl_stdout_to_python()

Tcl normally uses its own 1/O system to read and write data.

As tohil.rivet() can be used from Python to redirect Python’s writing to standard output to go through Tcl's I/O subsystem (and, hence, to
Rivet), tohil.tcl_stdout_to_python does the opposite, configuring the Tcl interpreter to redirect its standard output, stdout, away from Tcl's I/O
subsystem and instead send whatever is written through Python'’s.

If using Jupyter Notebook, invoking tohil.tcl_stdout_to_python() will cause any Tcl output written to standard output to appear in the
notebook rather than in the log file or stdout of the command running Jupyter notebook.

Copyright © 2022, GiD, CIMNE 34

https://https//jupyter.org

GiD

Tohil Tcl Functions

Once a package require Tohil has been performed from Tcl interpreter, the following commands are available:
tohil::call [-kwlist list] [-nonevalue word] [obj.]function [arg...]

tohil::call provides a way to invoke a Python function from Tcl, with zero or more positional parameters and zero or more named parameters,
without having to pass the parameters through Python'’s eval or exec and running the risk that Python metacharacters appearing in the data
will cause quoting problems, unintentional code execution, etc.

Whatever the Python function returns is returned to Tcl.
If -kwilist list is specified, list contains key-value pairs that will be passed to the function as named parameters.

When you use tohil::call, Tohil converts all of your arguments to Python Unicode, unless an argument is comprised of a special sentinel
(normally tohil::NONE, or the argument to the -nonevalue option), in which case the Python “None” data type is substituted in place of that
argument.

If -nonevalue word is specified, then this overrides the default sentinel string.
tohil::eval evalString

evalString contains a valid Python expression. Tohil evaluates the string using the Python interpreter and returns to Tcl whatever Python
returned.

If an exception is thrown and not caught by any Python code before getting back to Tohil, Tohil traps the exception, converts it into a Tcl
error, and returns that error to the caller.

tohil::exec
tohil::exec evaluates the code passed to it, similarly to Python’s exec function. Nothing is returned.

If the Python code prints anything, it goes to stdout using Python’s I/0O subsystem. However you can easily redirect Python'’s output to go to
a string, or whatever, in the normal Python manner. tohil::run, in fact, provides a way to do this.

To make it easier to comply with Python indentation rules, if the first nonblank line starts with whitespace, exec will un-indent the code block
so the first line is not indented at all and following lines are undented to match.

tohil::import module
Import the specified module into the globals of the Python interpreter.
The name of the module may be of the form module.submodule.

You can do the same thing using exec and, currently, exercise more control, for example t ohi | : : exec "fromio inport Stringl O'.
However, this reads cleanly and is often enough.

tohil::interact

We run tohil::interact from the Tcl command prompt to enter the Python interactive loop. When we’re done, we send end of file (*D) to end
the Python loop and return to the Tcl one.

tohil::run

tohil::run evaluates the code passed to it as if with Python’s exec, but unlike tohil::exec, anything emitted by the Python code to Python's
stdout (print, etc) is captured by tohil::run and returned to the caller.

tohil::redirect_stdout_to_python
Redirects Tcl's standard output to be sent through Python’s I/O subsystem.

Works by pushing a custom Tcl channel handler onto Tcl's stdout channel. The handler passes everything written to Tcl's stdout to Python
using Python'’s sys.stdout.write.

This allows, among other things, Tcl output to show up in Jupyter Notebook.
tohil_rivet()
tohil_rivet redirects data written from Python to standard output to be delivered through Tcl's standard output instead.

When Tcl is being executed from within the Apache Rivet webserver module, the output of Python code invoked from Tcl using Tohil will be
written into webpage Apache is constructing.

Copyright © 2022, GiD, CIMNE 35

https://flightaware.github.io/https://tcl.apache.org/rivet/

GiD

Tohil Types

The following sections describe the types that importing tohil makes available to the Python interpreter.
The principal tohil types are tclobj and tcldict. There are a few additional types for iterators and exceptions.

Tclobjs and tcldicts are mutable. As with native Python types, methods that add, subtract, or rearrange their members in place, don’t return a
specific item, returning None rather than the collection instance itself.

Some operations are supported by both object types; in particular, they can be compared for equality, tested for truth value, and converted
to a string with the st r () function, while with the r epr () produces a perhaps somewhat developer-friendly string representation of the
object. Tclobjs can be used freely as float or integer values in numeric calculations (when the contents of the tclobj are numeric), including
as a source or target of in-place arithmetic.

Tclobjs and tcldicts are very flexible in terms of what they can be constructed from. A tclobj can be created as an empty Tcl object, or from a
Python None object, a Python boolean, int, float, or string, a Python list, tuple, set, dict, sequence or map, and Unicode/UTF-8 translations
should work fine.

Testing Tclobj Truth Values

Any tclobj can be tested for truth value, for use in an if or while condition or as operand of a Boolean operations.

Interpretation of the boolean is according to Tcl rules. These are very close to Python rules, however.

>>> jnport tohi

>>> tohil.tclobj (True)
<tohil.tclobj: "1'>
>>> tohil.tclobj (Fal se)
<tohil.tclobj: "0 >

>>> bool (tohil.tclobj(1))
True

>>> pool (tohil.tclobj(0))
Fal se

>>> tohil.tclobj('y")
<tohil.tclobj: "y'>
>>> pool (tohil.tclobj('y"))

True

>>> pool (tohil.tclobj("t"))

True

>>> pool (tohil.tclobj('f"))

Fal se

>>> bool (tohil.tclobj('F))

Fal se

>>> bool (tohil.tclobj('not-a-bool ean'))

Traceback (nost recent call last):
File "<stdin>", line 1, in <nmodul e>

TypeError: expected bool ean val ue but got "not-a-bool ean"

Comparisons

Tclobjs and tcldicts can be compared. When they are asked to be compared, their string representations are compared. If the Tcl objects
don't have strings available, they will be marshalled, and this could be high overhead for large and/or very complicated structures.

Using Tohil tclobjs as Numeric Types

Tohil tclobjs can be freely used in Python code where integers or floating point numbers are needed. The underlying Tcl object will be
requested using Tcl standard library routines, causing an efficient fetch of the Tcl object’s cached representation if the cached representation
is of the correct type, or by causing an attempt by the Tcl library to convert the contents of the Tcl object to a python Boolean, integer or float.

Tohil will raise a TypeError exception if the Tcl object can’t be converted to the Python type that's needed.

Both Python and Tcl support arbitrarily large numbers, and you can freely assign tclobjs from arbitrarily large numbers produced by Python,
and vice versa.

Note that Python calculations performed using Tohil's tclobjs are limited to 64 bits (or whatever width a C language “long long” is on the
machine tohil was compiled for.) While this should be fine in the overwhelming majority of cases, if you are manipulating numbers that are
wider than 64 bits (i.e. less than -9,223,372,036,854,775,808 or greater than 9,223,372,036,854,775,807), you will need to move them from
tclobjs to native Python ints, first, by invoking i nt () on the tclobjs of interest.

Copyright © 2022, GiD, CIMNE 36

GiD

Bitwise Operations on Tohil Types

Tohil tclobj objects can be freely used as a source for boolean operations and shift counts. Bitwise and, or, exclusive or, left and right shift,
invert, and absolute value are supported.

Attempting bitwise operations on a tclobj that isn’t or can’t be converted into an integer will fail with a TypeError exception raised.

tclobjs as lists

Tclobjs whose internal contents are valid Tcl lists can be largely treated as Python lists.

Tclobjs-as-lists can be created from Python based on strings, lists, tuples, sets, even dicts. It's pretty cool.

The common sequence operations of i n and not i n work fine, while the notation s[i] returns the ith item of tclobj s.

Slices are supported, for example s[i : j] returns a slice of s fromito jwhile s[i : j : k] yields a slice of s from i to j with step k.

| en('s) returns the length of s’s list, while mi n('s) returns the smallest item and max(s) the largest. Beware these’ll be treated like strings
even if they're numbers.

Tclobjs are mutable; you can assign an element with s[i] = x, append an element with s. append(x) , extend s with the contents of a
Python list, set, tuple, int, float, etc, or another tclobj, with s. ext end(x) .

Because tclobjs are mutable, they cannot be directly used as a key in a dictionary, or a value in a set. If you need to use one as a key, wrap
it with str() or something.

You can clear a tclobj or tcldict using s. cl ear (), and pop items from the list using s. pop([i]).
list.append(x)

Add an item to the end of the list. Equivalentto a[l en(a):] = [x].

list.extend(iterable)

Extend the list by appending all the items from the iterable. Equivalentto a[| en(a):] = iterable.
list.insert(i, x)

Insert an item at a given position. The first argument is the index of the element before which to insert, so a. i nsert (0, x) inserts at the
front of the list, and a. i nsert (1 en(a), x) isequivalentto a. append(x).

list.remove(x)
Remove the first item from the list whose value is equal to x. It raises a Val ueEr r or if there is no such item.
list.pop([i])

Remove the item at the given position in the list, and return it. If no index is specified, a. pop() removes and returns the last item in the list.
(The square brackets around the i in the method signature denote that the parameter is optional, not that you should type square brackets at
that position. You will see this notation frequently in the Python Library Reference.)

list.clear()

Remove all items from the list. Equivalentto del a[:].

list.index(x[, start[, end]])

Return zero-based index in the list of the first item whose value is equal to x. Raises a Val ueEr r or if there is no such item.

The optional arguments start and end are interpreted as in the slice notation and are used to limit the search to a particular subsequence of
the list. The returned index is computed relative to the beginning of the full sequence rather than the start argument.

Some standard Python list methods are not implemented, such as count , rever se, sort, and copy.

An example that uses most of the list methods:

>>> fruits = tohil.tclobj(['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'])
>>> fruits

<tohil.tclobj: 'orange apple pear banana kiw apple banana' >

>>> |en(fruits)

7

>>> fruits.append(' waternelon')

>>> fruits

<tohil.tclobj: 'orange appl e pear banana kiw apple banana waternel on' >

>>> fruits.insert(1, 'cantal oupe')

>>> fruits

<tohil.tclobj: 'orange cantal oupe appl e pear banana kiw apple banana waternel on' >
>>> fruits. pop()

' wat er nel on

>>> fruits. pop(5)

" kiwi

Copyright © 2022, GiD, CIMNE 37

GiD

Mapping Types —t cl di ct

Tcldicts are a Python type that manages a Tcl object of a dictionary structure. Most things you can do with a Python dicts you can do with a
teldict.

However, unlike dicts, tcldicts are recursive. From Python, if a key is specified as a Python list, the Tcl dictionary is managed as a hierarchy
of dictionaries.

Tcldicts can be created by the t cl di ct constructor.
class tcldict(val[, kwargs])
Return a new tcldict initialized from an optional positional argument and a possibly empty set of keyword arguments.

Tcldicts can be created by passing a Python | i st, di ct, tupl e, or set, a Tcl list, a tclobj or tcldict object, or create one aliased to a
variable in the Tcl interpreter using t ohi | . tcl di ct var.

If no positional argument is given, an empty tcldict is created. If a positional argument is given and it is a mapping object, a dictionary is
created with the same key-value pairs as the mapping object. Otherwise, the positional argument must be an iterable object. Each item in
the iterable must itself be an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary, and the
second object the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding value in the
new dictionary.

Keywords can be def aul t, t o, and/or var . Specifying a default using the keyword is the same as doing it using a positional parameter.

The t o keyword specifies a default type conversion to be applied when retrieving an item from the dict. To-types can be str, bool, int, float,
list, set, dict, tuple, tohil.tclobj or tohil.tcldict.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):
list(d)

Return a list of all the keys used in the tcldict d.

len(d)

Return the number of items in the tcldict d.

d[key]

Return the item of d with key key. Raises a KeyEr r or if key is not in the map.

The __m ssing__() method supported by native Python dicts is not support by tohil tcldicts.
d[key] = value

Set d[key] to value.

del d[key]

Remove d[key] from d. Note that while native Python dicts raise a KeyEr r or if key is not in the map, it is not an error to attempt to delete
a key from a tohil dict.

keyind

Return Tr ue if d has a key key, else Fal se.

key notind

Equivalentto not key in d.

iter(d)

Return an iterator over the keys of the dictionary. This is a shortcut fori t er (d. keys()) .
clear()

Remove all items from the dictionary.

get(key], default])

Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None, so that this method never raises a K
eyError.

items()

Return a new view of the tcldict’'s items ((key, val ue) pairs). Note that unlike native Python dict items, tcldict items are not mutable. You
probably didn’t even know that dict items are mutable. See the documentation of view objects.

keys()

Copyright © 2022, GiD, CIMNE 38

https://flightaware.github.io/tohil-docs/reference/tohil_types.html#dict-views

GiD

Return a new view of the tcldict's keys. As with items above, if you keep a reference to keys the keys doesn’t change if the tcldict does. For
more on keys in general, see the documentation of view objects.

pop(keyl[, default])

If key is in the tcldict, remove it and return its value, else return default. If default is not given and key is not in the dictionary, a KeyEr r or is
raised.

update([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

updat e() accepts either another dictionary object or an iterable of key/value pairs (as tuples or other iterables of length two). If keyword
arguments are specified, the dictionary is then updated with those key/value pairs: d. updat e(red=1, bl ue=2).

Note: Not implemented yet unless it has been and someone didn’t update the docs.

values()

Return a new view of the tcldicts’s values. Same notes apply. See the documentation of view objects.

Dictionaries compare equal if and only if they are the exact same Tcl object or their Tcl string representations are identical.
Order comparisons (‘<’, ‘<=", >=’, '>’) can be performed.

Please note that unlike modern Python dicts, Tcldicts do not preserve insertion order. Tcldicts are traversed in hash order, which you can
consider to effectively be random. Sorry not sorry, not my fault.

Dictionary view objects

The objects returned by t cl di ct . keys(),tcldict.values() andtcldict.itens() are fake view objects. Unlike native Python
dicts, they do not provide a dynamic view on the tcldict's entries, which means that when the tcldict changes, the view does not reflect these
changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests.

Copyright © 2022, GiD, CIMNE 39

https://flightaware.github.io/tohil-docs/reference/tohil_types.html#dict-views
https://flightaware.github.io/tohil-docs/reference/tohil_types.html#dict-views

GiD

Tohil Exceptions

If Tcl code invoked from Python using Tohil gets a Tcl traceback, and no Tcl code traps the error, Tohil will receive the error and turn around
and throw a TclError exception.

TclError is an exception class that is, as Python requires, a class derived from the BaseExcept i on class.
In a try statement with an except clause that mentions TclError, that clause will handle the Tcl exception.

What's nice about the TclError class is that it is populated by Tohil with useful information that Tohil gleaned from the Tcl interpreter, such as
the interpreter result, traceback, Tcl error code, code level, and in some cases the file and line number.

Likewise, uncaught exceptions in the Python interpreter resulting from code invoked from Tcl using Tohil will propagate a TCL error including
a stack trace of the Python code that was executing. As the exception continues up the stack, the Tcl stack trace will be appended to it.

The Tcl error code is set to a Tcl list comprising “PYTHON?", the class name of the exception, and the base error message. This is
experimental but likely to continue. We would like to add the class arguments, though.

Such Python errors may be caught (as per Tcl stack traces) with Tcl's cat ch or t ry, the same as any other TCL error.

>>> try:
tohil.eval ("no")
except tohil.TclError as err:
mne = err
>>> i ne
<class Tcl Error 'invalid command nane
>>> ni ne. code
1
>>> mine. errorcode
[*TCL', 'LOOKUP', 'COWAND , 'no']
>>> mine.errorline
1
>>> npine.errorinfo
"invalid command nane "no"\n whi | e executing\n"no
>>> nine. errorstack
"I NNER no'
>>> mine. | evel
0
>>> mine.result
"invalid command nane "no"'

no"' ['TCL', 'LOOKUP', 'COMVAND , 'no']'>

Here is a sample Tcl session catching an uncaught Python exception as a Tcl error:

>>> tohil.interact()

$ tclsh

% package require tohil

3.2.0

% catch {tohil::eval "no"} catchResult catchDict
1

% puts $cat chResul t

name 'no' is not defined

% puts $cat chDi ct

-code 1 -level 0 -errorstack {INNER {invokeStkl tohil::eval no} UP 1} -errorcode {PYTHON NaneError
{nane 'no' is not defined}} -errorinfo {nane 'no' is not defined

from pyt hon code executed by tohil File "tohil", line 1, in <npdul e>
i nvoked from within
"tohil::eval "no""} -errorline 1

Copyright © 2022, GiD, CIMNE 40

GiD

Tohil Tcl Errors

If Python code invoked from Tcl results in a Python exception that is not trapped by any of the Python code, Tohil will trap the exception,
translate it into a Tcl error, and propagate the error back through Tcl.

If Tcl is being used interactively and the error isn’t caught, it will make its way to an error reported in the interactive session.

Likewise if the Tcl error propagates all the way back to tohil due to Tcl code having been called from Python, the Tcl error will be propagated
as a Python exception, see :ref:_tohil-exceptions.

The Tcl stack trace will include the Python stack trace of the Python code that was executing at the time of the exception being raised.

The Tcl error code, often referred to as the Tcl global errorCode, but also accessible via a Tcl dict created via an argument to Tcl’s catch or try
, is made available to Python through Tohil’'s TclError object.

Tcl's errorCode represents additional information about an error in the form of a Tcl list that is intended to be easy easy to process with
programs, unlike, for instance, error messages, which may be localized into different languages and be difficult to interpret reliably using a
program.

The first element of the errorCode list identifies a general class of errors. For Tcl errors generated by Tohil in response to uncaught Python
exceptions, the first element of errorCode is set to PYTHON.

The next element is the Python class name of the exception, followed by the base error message.

>>> tohil.interact()

% tohil::exec mssing_function

nanme 'mssing_function' is not defined

whi | e eval uating tohil::exec missing_function

% puts $error Code

PYTHON NaneError {nanme 'm ssing_function' is not defined}
% puts $errorlnfo

name 'mssing_function' is not defined

from python code executed by tohil File "tohil", line 1, in <nodul e>
i nvoked fromwithin
"tohil::exec m ssing_function"

("eval " body line 1)
i nvoked fromw thin
"eval $::tclreadline::LINE"

Here is another sample Tcl session catching an uncaught Python exception as a Tcl error, where the errorCode is set into the catch options
variable:

>>> $ tclsh % package require tohil 3.2.0 % catch {tohil::eval "no"} catchResult catchDict 1 % puts $catchResult name 'no’
is not defined % puts [dict get $catchDict -errorcode] PYTHON NameError {name 'no' is not defined}

% puts $catchDict -code 1 -level 0 -errorstack {INNER {invokeStk1 tohil::eval no} UP 1} -errorcode {PYTHON NameError
{name ‘no’ is not defined}} -errorinfo {name ‘no’ is not defined from python code executed by tohil File “tohil”, line 1, in
<module> invoked from within “tohil::eval “no™} -errorline 1

Copyright © 2022, GiD, CIMNE 41

GiD

Building and Installing Tohil
Building Tohil on Unix systems such as Linux, MacOS and FreeBSD
Below are instructions for building and installing Tohil from source code on Linux, the Mac, and FreeBSD.

The Tohil developers expect to make Tohil available as pip-installable binary packages for at least Intel/AMD64 and Arm procesors for
Linux, the Mac, and FreeBSD in the not too distant future. In the meantime, you will need to build from source.

Copyright © 2022, GiD, CIMNE

42

GiD

Building and Installing on Linux

Install Prerequisites

You should backup your machine regularly, and confirm you have made a full backup before proceeding.

First you need to install Python and the Python pip installer:

sudo apt install python3-dev python3-pip tcl8.6-dev

There are a few addition things that are probably nice to have:

sudo apt install tcl-doc tcl-tclreadline tclx8.4-dev tclx8.4-doc
sudo apt install tcllib tcllib-critcl

To run the test suite, you'll need Python’s hypothesis module:

sudo pi p3 install hypothesis

...and if you plan to build documentation, sphinx:

sudo pi p3 install hypothesis

Build the Configure Script

Next you build the configure script:

aut or econf

Then run the configure script. The Python version must be specified.

Run the Configure Script

Run the configure script. The Python version must be specified.

./configure --with-python-version=3.7m

don't forget the “m” if your stuff has that, which Debian tends to.

Make

make
sudo nake install
make test

There’s a README.Linux file in the top-level tohil directory that might have some useful info in it.

Copyright © 2022, GiD, CIMNE

43

GiD

Building and Installing on macOS

Install Prerequisites
You should backup your machine regularly, and confirm you have made a full backup before proceeding.

These instructions assume you are using MacPorts, an open source community initiative to provide a way to build and install open source
software on a Mac, and handle their dependencies.

Please follow instructions on installing MacPorts at https://www.macports.org.

Caveat emptor: Remember in our License we are not responsible if this stuff screws up your computer or fails to work in the expected way
for whatever reason.

Make sure you've got Xcode installed (Apple’s developer tools; they're free. You can install it from Apple’'s App Store.)

Then install MacPorts for the version of macOS that you're using/building for.

Bring MacPorts Up to Date

You'll want to update MacPorts config to the latest, using its selfupdate feature, and upgrade any installed ports.

sudo port sel fupdate

This next part feels a wee bit dangerous in that it might break some of your ports, but it's cool. It'll update all your installed ports, and their
dependencies, to the latest version it can:

sudo port upgrade outdated

You can use port out dat ed to see what ports need updating.

Install Python

Install python and select it. If you expect pyt hon to start Python 2 instead of Python 3, don’t execute the line below that sets python to point
to python39.

sudo port install python39

sudo port select --set python python39
sudo port select --set python3 python39
sudo port install py39-setuptools

Install Tcl

The commands below will install Tcl and a number of widely used packages. You can, of course, install all the Tcl stuff you want.

sudo port install tcl tcl-tls tcllib
sudo port install tclreadline tclx
sudo port install sqglite3-tcl

Install Autoconf

Install autoconf, a little bit older version than the absolute latest, because autoconf 2.71 changed stuff quite a bit and the Tcl Extension
Architecture (TEA) autoconf stuff that TOhil uses hasn'’t yet been updated to work with it, so if you try to use 2.71 to create the configure
script, it'll fail with a whole bunch of errors.

sudo port install autoconf264

Run Autoconf

From the tohil top-level directory, run aut oconf 264. Like many Unix command line tools, it will produce no output if everything worked.

Copyright © 2022, GiD, CIMNE 44

https://www.macports.org/

GiD

Run the Configure Script

It shouldn’t be necessary to specify —exec-prefix, but it seems to be. We could use some help on this.

./configure --prefix=/opt/local --exec-prefix=/opt/local --with-python-version=3.9 --with-tcl=/opt/local
/lib

...then make and make install:

Make

make
sudo make install
make test

There’s README.macOS and README.MacPorts files in the top-level tohil directory that might have some useful info in them.

Copyright © 2022, GiD, CIMNE 45

GiD

Building and Installing on FreeBSD

Install Prerequisites
You should backup your machine regularly, and confirm you have made a full backup before proceeding.

These instructions assume you are building FreeBSD ports from source. You can also install ports without building from source by using the
pkg package manager. We're only covering doing it using ports at this time.

First you need to install Python and the Python pip installer:

cd /usr/ports/|ang/python39
sudo neke install

cd /usr/ports/devel /py-pip
sudo neke install

Next install Tcl if you haven't already:

cd /usr/ports/lang/tcl 86
sudo neke install

cd /usr/ports/lang/tcl X
sudo make install

cd /usr/ports/devel/tcllib
sudo nmake install

cd /usr/ports/devel/tcllibc
sudo neke install

There are a few addition things that are probably nice to have such as ports devel/tclreadline, databases/tcl-sqlite3, devel/tclbsd, devel
Itcllauncher, and devel/tcltls.

To run the test suite, you'll need Python’s hypothesis module:

sudo pip3 install hypothesis

...and if you plan to build documentation, sphinx:

sudo pip3 install sphinx

Build the Configure Script

Next you build the configure script:

aut or econf

You might need to install devel/autoconf.

Run the Configure Script

Run the configure script. The Python version must be specified.

This specification is a little trickier than usual because the approach the FreeBSD developers have taken toward packaging is a little more
particular about where stuff is supposed to go.

This has advantages, though. For instance you can have multiple versions of Tcl installed and multiple versions of Python 3 installed at the
same time.

.lconfigure --with-tcl=/usr/local/lib/tcl8.6 --mandir=/usr/local/man --with-python-version=3.7m

Copyright © 2022, GiD, CIMNE 46

GiD

In the above, we tell configure where to find the Tcl library because it's in a slightly nonstandard place. We tell it the Python version; Tohil's
configure script will use python3.7m-config or whatever to find the Python library and includes.

Don't forget the “m” in the version name if your stuff has that.

Make

make
sudo nmake install
make test

There’'s a README.FreeBSD file in the top-level tohil directory that might have some useful info in it.

Copyright © 2022, GiD, CIMNE 47

GiD

Dealing with Bugs
Python is a mature programming language which has established a reputation for stability, but Tohil is new and somewhat immature.
In order to become highly reliable, the Tohil developers would like to know of any deficiencies you find in it.

It can be sometimes faster to fix bugs yourself and contribute patches to Tohil. This can be done through https://github.com/flightaware/tohil .

Documentation bugs

If you find a bug in this documentation or would like to propose an improvement, please submit a bug report on aforelinked github site. If you
have a suggestion on how to fix it, include that as well.

Using the Tohil issue tracker

Please use Tohil's issue tracker at https://github.com/flightaware/tohil/issues .

Getting started contributing to Tohil yourself

Beyond just reporting bugs that you find, you are also welcome to submit patches to fix them. We will review pull requests and work with you
to get yours accepted, or something satisfactory, as long as what you are trying to do is reasonably aligned with how we think tohil should
work.

You can always fork it if you want to go off on your own direction.

Copyright © 2022, GiD, CIMNE 48

https://github.com/flightaware/tohil
https://github.com/flightaware/tohil/issues

GiD

Tohil Copyright and License

Tohil and this documentation is:
Copyright (c) 2014, Aidan Hobson Sayers All rights reserved.
Copyright (C) 2021 FlightAware LLC All Rights Reserved

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Python and Tcl, build tooling, etc, are copyrighted by their respective developers.

Copyright © 2022, GiD, CIMNE 49

GiD

Install more Python modules

Note: It is possible to install more Python modules using the pip standard way of python
<GiD>\scripts\tohil\python -m pip install <module>

e.g. to install the KratosMultiphysics module version 9.2:

<G D>/ scripts/tohil/python -mpip install KratosMiltiphysics-all==9.2

Note: Kratos is is a framework for building parallel multi-disciplinary simulation: https://github.com/KratosMultiphysics
The pip program is located at <GiD>\scripts\tohil\python\scripts\pip.exe
modules will be located at

<GiD>\scripts\tohil\python\lib\site-packages

Note: probably must run pip in a console opened in Windows ‘as administrator’ (otherwise Windows doesn'’t allow to copy the files if GiD is
installed in ‘Program files’ as usual). In Linux do it as ‘sudo’

Some Python modules that look interesting for GiD purposes

NURBS-Python (geomdl) https://github.com/orbingol/NURBS-Python (pure-scripting use of NURBS)
pythonOCC https://dev.opencascade.org/project/pythonocc (Python wrap of C++ OpenCascade CAD)
vtk https://vtk.org (Python wrap of C++ Vtk scientific visualization library).

SciPy https://scipy.org (fundamental algorithms for scientific computing)

SymPy https://docs.sympy.org/latest/modules/geometry/index.html (library for symbolic mathematics)
PyMesh https://pymesh.readthedocs.io/en/latest (mesh processing library)

Copyright © 2022, GiD, CIMNE 50

https://github.com/KratosMultiphysics
https://github.com/orbingol/NURBS-Python
https://dev.opencascade.org/project/pythonocc
https://vtk.org/
https://scipy.org/
https://docs.sympy.org/latest/modules/geometry/index.html
https://pymesh.readthedocs.io/en/latest

GiD

Run Python as external process
It is possible to start Python running
<GiD>\scripts\tohil\python\python.bat

This open the typical Python console

BN C:\WINDOWS\system32icmd.exe — O *

: [MSC v.1932 64 bit (AMD64)] on win32
or "license” for more information.

hello world

This python process is not related with the gid.exe process (it is not an embedded Python)

It can be used for example to run a GiD problemtype Python-based solver, without need to install an extra Python, the one of GiD could be
used, and its relative location is a priori known.

If this process is killed the gid process is not affected, and don’t share any memory.

It is possible to import the tohil module in this Python interpreter to call Tcl commands, but will create a new Tcl interpreter with the standard
commands. Cannot use here GiD commands like tohil.call('GiD_Info','mesh’,'nodes',-array") or tcl.GiD_Info('mesh’,'nodes',-array")

Copyright © 2022, GiD, CIMNE 51

GiD

Run Python inside GiD

It is possible to run a Python script in several ways
1- From the lower entry

2- Python IDLE shell

3- From an user-macro button

4- Invoked from a problemtype or plugin

Copyright © 2022, GiD, CIMNE

52

GiD

From the lower entry

From the entry that is placed at the bottom of the GiD window, can invoke Tcl code writing -np- followed some space and then some tcl code
an press <Return>

Note: -np- mean ‘No-Process’ (that the words are not GiD process keywords) and instead the next command is expected to be Tcl code. It
is used as a fast way to run a simple procedure or re-define code.

Use copy/paste code after -np-

In particular there are some predefined Tcl procs that run python code, like G D_Pyt hon_Exec that expects the python code to be
evaluated

Example: matplotlib graph of a line

This is a simple example of call from Tcl a Python code that uses the matplotlib to show a graph (in new Tk window opened by tkinter)

G D_Pyt hon_Exec {
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.yl abel (" some nunbers')
plt.show()

G D_Pyt hon_Exec do an implicit package require tohil andthentohil::exec

Can invoke this Tcl code for example pasting it after - np- in the command line (with one or more spaces separating the code pasted), and
press <return>

L.
| ¥
1—} x
PROFESSIOMAL fleating licence ;
Command: |-np- GiD_Python_Exec{ import matplotlib.pyplot as pit plt.plot((1, 2, 3, 4]) pltylabel('some numbers’) plt.show(} | ¥ @

Zoom: x 0,96 Modes: 0, Elements: 0 Render: normal Layers: 1 Pre

then will appear a window like this

Copyright © 2022, GiD, CIMNE 53

GiD

¥, Figure 1 — O *

4.0

3.5 1

3.0 +

2.5 7

some numbers

2.0+

1.5 A

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

$ Q=

There are other procs similar to G D_Pyt hon_Exec ,like G D_Pyt hon_Eval (for a single instruction and value is returned) or G D_Pyt ho
n_Cal | (to invoke a function that must be previously defined)

a

Source a file with the code

The normal way to write long Python code is write it in a .py file.
Note: Visual Studio Code is our recommended editor, installing the MS Python extension for this language.

G D_Pyt hon_Sour ce is a Tcl proc that expects the name of a python file with the code to be sourced

Example: matplotlib graph of two curves

The file <GiD>/scripts/tohil/doc/demo_matplotlib.py contain a code like the one of the image

Copyright © 2022, GiD, CIMNE 54

GiD

) File Edit Selection Run Terminal Help demo_matplotlib.py - Visual Studio

plot(t2, np.co
plt. show()

®@oho

¥ I° masterr O

§ lJira: Enrique Escolano: > Mo active issue § Bitbucket: Enrique Escolano:

and can source this file writing this (<GiD> must be replaced by the true path)
-np- GiD_Python_Source {<GiD>/scripts/tohil/doc/demo_matplotlib.py}

then this window will appear:

Spaces:4 UTF-8 CRLF

{& Python

3.10.5 64-bit

A 0

"%' Figure 1

1.0 1

0.5 ~

0.0

_'D.S -

1.04 = -~
0.5 _ [
0.0 1

I

—0.5 1 i
' 1 I

1.0 1

+ Q=

Python force reload afile

Copyright © 2022, GiD, CIMNE

55

GiD

Other Tcl procs related to source Python code are G D_Pyt hon_I nport _Fi |l e and G D_Pyt hon_I nport

Using our Tcl command G D_Pyt hon_|I nport (thatdotohil::inmport) willimport a module in Python from its tail name without .py
extension, and must be found based on the path environment variable

G D_Pyt hon_| nport _Fi | eis similar to G D_Pyt hon_I nmpor t but expects the full path.
But if we are developing and modify the .py file doing a new import won't refresh the code in the interpreter.
A trick to do it it to use the Tcl command G D_Pyt hon_Sour ce, then the new code of the file is used without need to restart GiD.

In fact it seems that this is similar to use in Python the function reload of the importlib module

import inportlib
i mportlib.rel oad(nodul e)

Copyright © 2022, GiD, CIMNE 56

GiD

IDLE shell

It is possible to open an IDLE shell, e.g. to try interactive Python commands, with the Tcl proc G D_Pyt hon_Open_| DLE_Shel |

In practice go to GiD menu Ultilities->Tools->Console Python...

e.g. the next picture show this IDLE console and the use of a Python command to set a variable with the current number of surfaces asked

to GiD

num surfaces=tcl.G D_| nfo("geonetry", "nunsurfaces")

and it creates in GiD a new straight line in the layer Layer0 from the point id=1 to the point id=2 and store the new line id in a variable

id_new |ine=tcl.G D Geonetry("create","line","append","stline","Layer0","1","2")
o - m] x
Files View Geometry Utilities Data Mesh Calculate Help
f— eyttt e » o
g s &5, | oo = | #* [Lveo -0 | DN
D+ . Double click here to tear off the window x|
Dn y Layers Groups
e Y 2T
tﬁ@ Name ¥ C /O FU Tr B
A lyed /. o m
4 ’
\'m
N
C ar .
-_— GiD python IDLE shell — O *
£\
D A File Edit Debug Options Window Help
@ Q\,’.\. Python 3.10.5 (main, Jul 26 2022, 18:03:45) [MSC v.1932 &4 bit (AMD&E4)] on win32
ﬂ\ Type "help", "copyright", "credits" or "license ()™ for more information.
" e >>> | num_surfaces=tcl.GiD Info ("geometry", "numsurfaces™)
—_ @ >>> | print (num_surfaces)
x M 2
’7 >>>| id _new_line=tcl.GiD Geometry("create","lins", "append", "stline", "Layesro™,"1","2")
b »>>| tcl.GiD_Redraw()
—‘ Q <tohil.tclobj: '"'>
y [e
DL
L,
2 3
=] x
-»-np- GiD_Python_Open_|DLE_Shell | :
->-np- GiD_Python_Open_IDLE_Shell Ln:9 Cok0 S
Command: I f @
Zoom: x 0.95 Modes: 0, Elements: 0 Render: normal Layers: 1 (9.773827, -0.3392546, 0) Pre
Note that the new line is not immediately shown, until the model is redrawn (can invoke it with witht cl . G D_Redr aw())
Note: The use of this console is recommended to interactively try several Python commands.
Copyright © 2022, GiD, CIMNE 57

GiD

From an user-macro button

The macros toolbar have buttons that call the Tcl code. Most buttons and procs are predefined, for common use, but each user can add its
own buttons (they are stored with its preferences), to do some interesting action.

See Macros

In particular the Tcl code can invoke Python code with the procs related previously: GiD_Python_Exec, GiD_Python_Call,
GiD_Python_Source, ...

Copyright © 2022, GiD, CIMNE 58

https://gidsimulation.atlassian.net/wiki/spaces/GCS/pages/487818970/Macros

GiD

From a problemtype or plugin

A problemtype is a collection of files inside <GiD>/problemtypes that customize GiD for a particular kind of simulation. When a problemtype
is loaded it can modify the whole GUI: menus, toolbars, etc, and can for example add a menu that invoke the Tcl code that run the Python

command of interest
A plugin of GiD is simply a collection of files inside <GiD>/plugins that are loaded when GiD starts. They can modify the GUI, for example
adding some menu to invoke some new feature. Like previously the Tcl code can run Python code (e.g. Real example: meshio GiD plugin)

Note: the features added by plugins are available without need to load a problemtype, and are preserved swapping to other problemtype.

Copyright © 2022, GiD, CIMNE

59

GiD

Real example: meshio GiD plugin

This plugin uses the features of the meshio Python module to allow GiD import/export the mesh in all formats supported by this module.
The module is written in python, but GiD uses Tcl as main scripting language. The Tohil package is the bridge to allow its use.

The plugin is placed at

<GiD>/plugins/Import/meshio

and like the rest of plugins is automatically loaded from Tcl when GiD starts.

It add to the Files Import/Export menus a new “meshio” item.

to import meshes the Python file gid_meshio.py define for example a function my_nmeshi o_r ead_nesh

i nport nunpy as np
i nport meshio

def ny_meshi o_read_nesh(fil enane):
#to avoid that nunpy truncate the printed representation of its arrays
np. set _printoptions(threshol d=np.inf)
nmesh=neshi o. read(fil enane)
return [nesh. points, mesh. cells, mesh.cells_dict]

and the Tcl file meshio.tcl invoke the import of this file in the Python interpreter to have defined the function, and then call the function to
obtain the mesh data independently of the mesh file format read.

set filename_python [file join [gid_filesystem:get_folder_standard plugins] |nport/neshio/gid_neshio.

py]
G D _Python_Inport_File $filenane_python

set m [G D_Python_Cal | gid_neshio.nmy_neshio_read_nesh $fil enanme_nesh]

Here G D_Pyt hon_I nport _Fi | e is an auxiliary proc (see <GiD>/scripts/gid_python.tcl) that decorate the tohil syntax and basically do
package require tohil

tohil::inmport $nodul e_nane

And G D_Pyt hon_Cal | is like an alias of the command t ohi | : : cal |

then the variable m has the data that define a collection of meshes (element type, coordinates of nodes and element connectivities), and this
data is processed at Tcl level to have the desired final data.

this is the code of the proc that create GiD meshes from a file in a format supported by the meshio Python module:

proc Meshlo::Init { } {
vari abl e neshi o_num nodes_per_cel |
vari abl e nmeshi o_gi d_el ement

#l i near and serendi pit

set neshi o_num nodes_per_cel |l (vertex) 1

set neshi o_num nodes_per_cell (line) 2

set neshi o_num nodes_per_cell (triangle) 3

set neshi o_num nodes_per_cel | (quad) 4

set meshi o_num nodes_per_cel | (quad8) 8

set neshi o_num nodes_per_cell(tetra) 4

set neshi o_num nodes_per_cel | (hexahedron) 8
set neshi o_num nodes_per_cel | (hexahedron20) 20
set neshi o_num nodes_per_cel | (hexahedron24) 24
set neshi o_num nodes_per_cel | (wedge) 6

set nmeshi o_num nodes_per_cel | (pyram d) 5
#quadratic

set meshi o_num nodes_per_cell (1ine3) 3

set neshi o_num nodes_per_cel | (triangl e6) 6

set neshi o_num nodes_per_cel | (quad9) 9

set neshi o_num nodes_per_cell (tetral0) 10

set neshi o_num nodes_per_cel | (hexahedron27) 27
set neshi o_num nodes_per_cel | (wedgel5) 15

set neshi o_num nodes_per_cel | (wedgel8) 18

set neshi o_num nodes_per_cel | (pyrani d13) 13
set meshi o_num nodes_per_cel | (pyram d14) 14
#degree 3

set neshi o_num nodes_per_cel |l (line4) 4

set neshi o_num nodes_per_cell (triangl el0) 10

Copyright © 2022, GiD, CIMNE 60

GiD

set meshi o_num nodes_per_cel | (quad16) 16

set neshi o_num nodes_per_cel | (tetra20) 20

set neshi o_num nodes_per_cel | (wedge40) 40

set neshi o_num nodes_per_cel | (hexahedron64) 64
#degree 4

set neshi o_num nodes_per_cell (line5) 5

set neshi o_num nodes_per_cel | (triangl el5) 15

set neshi o_num nodes_per_cel | (quad25) 25

set meshi o_num nodes_per_cel |l (tetra35) 35

set neshi o_num nodes_per_cel | (wedge75) 75

set neshi o_num nodes_per_cel | (hexahedron125) 125
#degree 5

set neshi o_num nodes_per_cel |l (Iine6) 6

set neshi o_num nodes_per_cell (triangle2l) 21

set neshi o_num nodes_per_cel | (quad36) 36

set neshi o_num nodes_per_cel |l (tetrab56) 56

set meshi o_num nodes_per_cel | (wedgel26) 126

set neshi o_num nodes_per_cel | (hexahedron216) 216
#degree 6

set neshi o_num nodes_per_cell (line7) 7

set neshi o_num nodes_per_cel | (triangl e28) 28

set neshi o_num nodes_per_cel | (quad49) 49

set nmeshi o_num nodes_per_cel | (tetra84) 84

set neshi o_num nodes_per_cel | (wedgel96) 196

set meshi o_num nodes_per_cel | (hexahedron343) 343
#degree 7

set neshi o_num nodes_per_cel | (Iine8) 8

set neshi o_num nodes_per_cell (triangl e36) 36

set neshi o_num nodes_per_cel | (quad64) 64

set neshi o_num nodes_per_cel |l (tetral20) 120

set nmeshi o_num nodes_per_cel | (wedge288) 288

set neshi o_num nodes_per_cel | (hexahedron512) 512
#degree 8

set neshi o_num nodes_per_cel |l (Iine9) 9

set neshi o_num nodes_per_cel | (triangl e45) 45

set neshi o_num nodes_per_cel | (quad81) 81

set neshi o_num nodes_per_cel | (tetral65) 165

set neshi o_num nodes_per_cel | (wedge405) 405

set neshi o_num nodes_per_cel | (hexahedron729) 729
#degree 9

set meshi o_num nodes_per_cell (1inel0) 10

set neshi o_num nodes_per_cel | (triangl e55) 55

set neshi o_num nodes_per_cel | (quad100) 100

set neshi o_num nodes_per_cel |l (tetra220) 220

set neshi o_num nodes_per_cel | (wedge550) 550

set neshi o_num nodes_per_cel | (hexahedron1000) 1000
set neshi o_num nodes_per_cel | (hexahedron1331) 1331
#degree 10

set meshi o_num nodes_per_cell (linell) 11

set neshi o_num nodes_per_cel | (triangl e66) 66

set neshi o_num nodes_per_cel | (quad121) 121

set nmeshi o_num nodes_per_cel |l (tetra286) 286

#l i near and serendi pit

set neshio_gi d_el enent (vertex) point

set neshio_gid_elenent(line) line

set neshio_gid_elenent(triangle) triangle

set neshio_gi d_el enent (quad) quadril ateral

set neshio_gid_elenent(tetra) tetrahedra

set neshi o_gi d_el enent (hexahedron) hexahedra
set neshio_gi d_el enent (wedge) prism

set neshio_gid_el enent (pyram d) pyramd
#quadratic

set neshio_gid_elenent(line3) line

set neshio_gid_elenent(triangle6) triangle

set neshio_gi d_el enent (quad8) quadril atera

set neshio_gi d_el enent (quad9) quadrilatera

set neshio_gid_elenent(tetrall) tetrahedra

set neshi o_gi d_el enent (hexahedron20) hexahedra
set neshi o_gi d_el enent (hexahedron27) hexahedra
set neshio_gi d_el enent (wedgel5) prism

set neshio_gi d_el enent (pyram d13) pyram d

}
proc Meshl o:: ReadPreUnstructuredMesh { filename } {

set fail O

vari abl e neshi o_gi d_el ement

vari abl e meshi o_num nodes_per _cel

Meshl o: : I nport_gi d_nmeshio_py ;#to load in python the file gid_neshio.py to define its python

functions before be called

set m[G D_Python_Call gid_neshio.nmy_neshio_read_nesh $fil enane]

set nodes_coordi nates [lindex [Meshlo::PythonArrayToTcl List [lindex $m 0]] O]
#e.g.[lindex $m 1] == {<meshio CellBlock, type: triangle, numcells: 156, tags: []>}
set neshi o_el enent _types_and_connectivities [Meshlo:: PythonArrayToTcl List [lindex $m 2]]
set layer [G D _Layers get to_use]

set offset_nodes [G D_Info mesh MaxNunmNodes]

set offset_elements [G D _Info nesh MaxNunEl enent s]

set last_elenment_id $offset_elenents

Copyright © 2022, GiD, CIMNE 61

GiD

#better use G D_MeshPre_Create with same syintax as G D MeshPost (and sone day could be inpl enented
to be faster in Ct+)
set num.nodes [Ilength $nodes_coordi nat es]
set node_ids [objarray new fromto intarray [expr $offset_nodes+l] [expr $offset_nodes+$num nodes]]
set vertices [objarray new doubl earray [expr $num nodes*3]]
set i O
foreach node $nodes_coordinates {
foreach val ue $node {
objarray set $vertices $i $val ue
incr i

}

foreach {meshi o_el enent _type neshi o_connectivities} $meshio_el enent_types_and_connectivities {
set el ement_type ""
set el ement _num nodes 0O
if { [info exists neshio_gid_el ement($neshio_element_type)] } {
set el enent _type $neshi o_gi d_el enent ($nmeshi o_el ement _t ype)
set el ement _num nodes $meshi o_num nodes_per _cel | ($nmeshi o_el ement _t ype)
} else {
W "el enent $neshi o_el ement _type not supported"
conti nue

set elenments [lindex $meshio_connectivities 0]
set numel ements [Ilength $el enents]
set elenent_ids [objarray new fromto intarray [expr $last_el enent_id+1] [expr
$l ast _el ement _i d+$num el enent s] |
set elenment_vertex_indices [objarray new intarray [expr $num el enent s*$el ement _num nodes]]
set i O
foreach el enent $el enents {
foreach node_id $el enent {
objarray set $el ement_vertex_indices $i [expr $node_i d+$of fset _nodes+1]
incr i
}
}
set zero_based_array O
G D_MeshPre_Create $el ement _type $el enent _num nodes $node_i ds $vertices $el enment _ids
$el ement _vertex_indi ces $zero_based_array $l ayer
incr last_elenent_id $numel ements

return $fail

For the import feature GiD is invoking from its Tcl code functions of Python files and modules like meshio and numpy.

For the export feature it is implemented in two alternative ways:

1. For Tcl-like programmers, with most code in Tcl
2. For Python-like programmers: with most code in Python

Note that only the second approach is bi-directional and will invoke from Python Tcl commands (of the GiD interpreter) importing in Python
the tohil module

1. Ask to GiD its current mesh data with Tcl, and process this data with Tcl code to reach the format expected by the Python meshio
function and then call a Python function that create a meshio.Mesh and write it to file with the desired format.

2. From Tcl call some Python code that ask GiD mesh information calling Tcl commands and process this data with Python to create a
meshio.Mesh and write it to file with the desired format.

The implementation of 1. is something like this

meshi o. t cl (big code)

proc Meshlo::Init { } {
vari abl e nmeshi o_el ement _nane

set meshi o_el ement _nane(point, 1) vertex

set neshio_el enent _name(line, 2) line

set neshio_el ement _nanme(triangle,3) triangle

set neshi o_el enent _nanme(quadrilateral,4) quad

set neshio_el ement _nane(tetrahedra, 4) tetra

set neshi o_el enent _nane(hexahedra, 8) hexahedron
set neshi o_el ement _name(prism 6) wedge

set neshi o_el ement _name(pyranid,5) pyramd
#quadratic

set neshio_el enent _name(line, 3) line3

set neshio_el ement _nane(triangle, 6) triangle6

set neshi o_el enent _nanme(quadril ateral,8) quad8

set neshi o_el ement _nanme(quadril ateral,9) quad9

set neshi o_el enent _nane(tetrahedra, 10) tetrall

set neshi o_el ement _name(hexahedr a, 20) hexahedr on20
set neshi o_el ement _nanme(hexahedr a, 27) hexahedron27
set meshio_el ement _nane(prism 15) wedgel5

set neshi o_el ement _nanme(pyram d, 13) pyram d13

Copyright © 2022, GiD, CIMNE 62

GiD

proc Meshlo:: Tcl Qbj arrayToPyt honArrayPoi nts { node_xyzs } {
set points ""
| assi gn $node_xyzs xs ys zs
set num nodes [objarray |ength $xs]
for {set i_node 0} {$i_node<$num nodes} {incr i_node} {
set x [objarray get $xs $i _node]
set y [objarray get $ys $i_node]
set z [objarray get $zs $i _node]
append points "\[$x, $y, $z\],"

}
return "\[$points\]"

}
proc Meshlo:: Tcl Obj arrayToPyt honArrayConnectivities { el ement_num nodes connectivities } {
set cells ""
set numel ements [expr [objarray |ength $connectivities]/$el ement_num nodes]
set i O
for {set i_elenment 0} {$i_el ement<$num el ements} {incr i_elenment} {
set node_ids [list]
for {set i_node 0} {$i_node<$el enent_num nodes} {incr i_node} {
| append node_i ds [objarray get $connectivities $i]
incr i
} - .
append cells "\[[join $node_ids ,]\],"
return "\[$cel I s\]"
}

proc Meshlo::WitePreUnstructuredMesh { filenanme } {

vari abl e neshi o_el enment _nane

Meshl o:: I nmport _gi d_meshio_py ;#to load in python the file gid_neshio.py to define its python
functions before be called

coordi nat es
lassign [G D _Info mesh nodes -array] node_ids node_xyzs

set max_i d_nodes [objarray get $node_ids end]
set num nodes [objarray length [Iindex $node_xyzs 0]]
set new_node_ids ""
set nodes_renunbered_for_neshio 0
if { $max_i d_nodes != $num nodes } {
set nodes_renunbered_for_neshio 1
set new_node_ids [objarray new fromto intarray 0 [expr $num nodes-1]]

}
set points [Meshlo:: Tcl Qbj arrayToPyt honArrayPoi nts $node_xyzs]
set cells "\["
foreach el ement _type {linear triangle quadrilateral tetrahedra pyram d prism hexahedra } {
set elements_data [lindex [G D Info nesh el enents $el enent _type -array2] 0]
if { [Ilength $elenents_data] } {
| assign $el enents_data el enent _type_ret element_ids connectivities materials
set num el ements_bl ock [objarray | ength $el enent _ids]
if { $num el enents_block } {
if { $nodes_renunbered_for_neshio } {
obj array renunber $connectivities $node_ids $new _node_ids
} else {
objarray incr $connectivities -1 ;#neshio is zero based
}

set sone_el ement_id [objarray get $el enent_ids 0]
set el enent_numnodes [Ilength [G D Mesh get el ement $sone_el ement _id connectivities]]
set meshi o_etype $neshi o_el enent _nane($el ement _t ype, $el ement _num nodes)
append cells "(\"$neshio_etype\", [Meshl o:: Tcl Obj arrayToPyt honArrayConnectivities
$el ement _num nodes $connectivities]),"

}
}

append cells "\]"
set result [G D _Python_Call gid_neshio.ny_neshio wite_nmesh $points $cells $fil enang]
return O

gi d_meshi o. py (small code)

i nport meshio

def ny_neshio_wite_nesh(points,cells,filenane):
#trick, use ast.literal _eval to convert fromstring to |list representation
i mport ast
poi nts=ast.literal _eval (points)
cells=ast.literal _eval (cells)
nmesh=neshi o. Mesh(poi nts, cells)
resul t=mesh. wite(fil enane)
return result

Copyright © 2022, GiD, CIMNE 63

GiD

The implementation of 2. is something like this

meshi o. tcl (small code)

proc Meshlo::WitePreUnstructuredMesh2 { filenane } {

Meshl o: : I nport _gi d_meshio_py ;#to load in python the file gid_neshio.py to define its python
functions before be called

set result [G D_Python_Call gid_neshio.nmy_neshio_wite_nmesh2 $fil enane]

return O

gi d_meshi o. py (big code)

i nport nunpy as np
i mport tohil
i nport meshio

#to create functions and variables for all tcl avail abl e ones
tcl=tohil.inmport_tcl()

gid_to_neshio_type = {
"sphere, 1": "vertex",
"point,1":"vertex",
"l'ine,2":"line",
"triangle,3":"triangle",
"quadril ateral, 4":"quad",
"tetrahedra, 4":"tetra",
"hexahedr a, 8": " hexahedron",
"prisme6":"wedge",
"pyramd, 5": " pyramnd",
#quadratic
"l'ine,3":"line3",
"triangle, 6":"triangl e6",
"quadril ateral, 8":"quad8",
"quadril ateral, 9":"quad9",
"tetrahedra, 10": "tetral0",
"hexahedr a, 20" : " hexahedr on20",
"hexahedr a, 27" : " hexahedr on27",
"prism 15": "wedgel5",
"pyramd, 13": " pyram d13",

def gid_points_to_neshi o_points(node_xyzs):
XS, ys, zs=node_xyzs
num nodes=l en(xs)
poi nt s=np. enpt y((num nodes, 3))
for i_node in range(numnodes):
poi nts[i _node] =(fl oat (xs[i _node]), float (ys[i_node]), float(zs[i_node]))

#points[:, 0] = xs[:]
#points[:, 1] = ys[:]
#points[:, 2] = zs[:]

return points

def gid_el ements_to_neshio_cells(el ement_num nodes, connectivities):
cel | s=[]
#operator // is for integer division
num el ement s=| en(connectivities)//el enent_num nodes
i =0
for i_elenent in range(numel enents):
node_i ds=[]
for i_node in range(el ement_num nodes):
node_i ds. append(connectivities[i])
i +=1
cel | s. append(node_i ds)
return cells

def tohil _obj_array_int_to_nunpy(itens):
num.itenms=l en(itens)
nunpy_array=np. enpty(num.itens, np. i nt 64)
for i in range(num.itemns)
nunpy_array[i]=int(itens[i])
return nunpy_array

def nunpy_renunber (connectivities, ol d_node_ids, new _node_ids):

fail =0
| engt h_connectivities=len(connectivities)
I ength_ol d_i ds=Il en(ol d_node_i ds)
| engt h_new_i ds=I en(new_node_i ds)
i f(length_old_ids==l ength_new_ids):

max_ol d_i d=np. nax(ol d_node_i ds)

new_numnber =np. enpt y(max_ol d_i d, np. i nt 32)

for i in range(length_old_ids)

new_nunber [ol d_node_i ds[i]]=new_node_i ds[i]

Copyright © 2022, GiD, CIMNE

GiD

for i in range(length_connectivities)
connectivities[i]=new_nunber[connectivities[i]]
el se:
fail=1
return connectivities

def nunpy_incr(connectivities,increnent):
connectivities=connectivities+i ncrenent
return connectivities

#simlar to ny_neshio_wite_nesh but asking G D data from python and processing this data here
def ny_neshio_wite_nesh2(filenane):
i nfo_nodes=tuple(tcl.G D_Info(' mesh', ' nodes',"'-array'))
node_i ds, node_xyzs=i nf o_nodes
#tcl . W node_i ds)
#t cl . W node_xyzs)
mex_i d_nodes=i nt (node_i ds[-1])
num nodes=I en(node_i ds)
nodes_r enunber ed_f or _neshi o=Fal se
i f (mex_id_nodes != num nodes):
nodes_r enunber ed_f or _neshi o=True
new_node_i ds=np. ar ange(num_nodes)
poi nt s=gi d_poi nts_t o_neshi o_poi nt s(node_xyzs)
cells =]
for elenent_type in
["linear', "triangle', ' quadrilateral', 'tetrahedra','pyramd','prism,'hexahedra']:
info_elenents=tuple(tcl.G D Info('nesh',"'elenents', el enment_type,'-array2'))
if (len(info_elenents)):
#tcl. Wi nfo_el enents)
el ement s_dat a=i nf o_el enent s[0]
el ement _type_ret, el enent_ids_original, connectivities_original, mterial s=el ements_data
el ement _i ds=tohi | _obj _array_int_to_nunpy(tupl e(el enent_ids_original))
connectivities=tohil_obj_array_int_to_nunpy(tuple(connectivities_original))
num el ement s_bl ock=l en(el enent _i ds)
if (num_el enents_bl ock):
i f (nodes_renunbered_for_neshio):
connecti viti es=nunpy_renunber (connectivities, node_i ds, new_node_i ds)
el se:
connecti vi ti es=nunpy_i ncr(connectivities,-1)
sonme_el enent _i d=el enent _i ds[0]
el ement _num nodes=len(tcl. G D _Mesh('get',"'elenent', sone_elenent_id,' connectivities'))
key=el ement _type+',' +str (el ement _num nodes)
neshi o_et ype=gi d_t o_neshi o_t ype[key]
cel | s. append((neshi o_etype, gi d_el ements_t o_neshi o_cel | s(el ement _num nodes,
connectivities)))
nesh=neshi o. Mesh(poi nts, cells)
resul t=mesh. wite(fil ename)
return result

Note that in this case use Python commands to call Tcl like these:

i mport tohil

tcl=tohil.inmport_tcl()

info_nodes=tuple(tcl.G D_Info('nesh','nodes','-array'))

info_elements=tuple(tcl.G D _Info('nesh',"elenents',elenent_type,'-array2'))

#t cl . W node_i ds) #to show information in a GiD message window for debug

el enent _num nodes=len(tcl.G D _Mesh('get','elenment',sone_elenment_id,' connectivities'))

To know the syntax of GiD-Tcl added commands (like GiD_Info or GiD_Mesh) read the GiD Customization Manual: TCL AND TK
EXTENSION

Copyright © 2022, GiD, CIMNE

65

https://gidsimulation.atlassian.net/wiki/spaces/GCM/pages/2385543806/TCL+AND+TK+EXTENSION
https://gidsimulation.atlassian.net/wiki/spaces/GCM/pages/2385543806/TCL+AND+TK+EXTENSION

GiD

Debug Python code

Python Print

In a Python ran externally it is opened a DOS console, and then it is possible to use the Python function print to show values in this console

BE CAWINDOWS\system32\cmd.exe — O Pt

on win3z2

But running code inside GiD this console doesn't exists, and then this command cannot be used, except in case that the IDLE shell is
opened and then the output of print is showed there.

Python print to file

To debug Python code it is always possible (inside and outside GiD) to print data of variables to a file, with something like this:

f=open(' C:/tenp/ ny_debug.txt',"a")
f.wite('hello world\n")
f.close()

Python show text with the W GiD proc
If Python is running in GiD then can call the Tcl GiD procedure called W that show text in a window

e.g.

G D_Pyt hon_Exec {
i nport tohil
tcl=tohil.inport_tcl()
a=5.2
tcl.Wa)
b=a*3
tcl.Wh)

will show a GiD window with the value of the variables 'a’ and 'b’

Warning n

5.2
15.600000000000001
Cloze
Note:tcl = tohil.inport_tcl () isa tohil module command that uses Tcl's introspection capabilities to create Python object methods

for each Tcl proc and command, so that calling the Tcl procs looks very much like calling any Python function.

Warning: the Python methods created depends on the procs existing whent ohi | . i nport _tcl () is invoked. If a proc like W is already
not defined in Tcl during this call, the Python method tcl. W('hello world) won't exists, but tohil.call('W','hello world") will works.

Copyright © 2022, GiD, CIMNE 66

GiD

Warning: It seems that tcl.W() cannot be called from the IDLE shell window or will crash

By now do not try something like this or GiD will crash:
GiD python IDLE shell = O X

File Edit Debug Options Windew Help
Bython 3.10.5 (main, Jul 2& 2022, 18:03:45) [M5C w.15%32 g4 bit (AMDE4)] on w
in32
Type "help™, "copyright", "credica™ or "licenae ()" for more information.
»»> | import tohil
tel=tohil.import Tel()
ams . 2
tel W (a)f

L6 Cok8

In this case it is less interesting to be used, because can use print(). The most interesting case is to use to debug code of G D_Pyt hon_Exec
,or G D_Pyt hon_Sour ce

Copyright © 2022, GiD, CIMNE 67

GiD

Debug Python from VS Code editor

The scenery of use python in GiD is not usual, because the main process is not python.exe but gid.exe, and the python interpreter is
embedded in GiD.

® The ‘normal’ case is to run a python.exe process that evaluate the code of a .py python file.

In the ‘normal’ case it is easy to use the Visual Studio Code editor, install the Python extension of Microsoft, and open a .py file, set
breakpoints with <F9> and start debugging with <F5> and see the value of variables, stack trace, etc when the flow reaches a break point.

® The GiD case run a gid.exe that has embedded a Tcl interpreter and at run time is loaded the tohil package that create an embedded
Python interpreter and add Tcl commands to call Python to this interpreter . At run time it is also possible that this Python interpreter
import the tohil module that add Python functions to call the Tcl interpreter.

Note: Running python.exe and importing tohil will create a new Tcl interpreter (not related at all with the one embedded in GiD, then GiD
commands cannot be used)

It is possible in this case to do a ‘remote debugging’ with Visual Studio Code, connecting the debugger with the embedded Python of a
running gid.exe in a host and port (e.g. localhost and 5678)

but before gid must start a server on this host and port calling our Tcl proc G D_Pyt hon_St art Debugger Ser ver

proc G D _Python_StartDebugger Server { } {

tohil::inmport debugpy

#tohil::exec "debugpy.log_to('[GdUils::GetTnp]"')"

set ny_python [file join [gid_filesystem:get_folder_standard scripts] tohil/python/bin/x64/python.
exe]

#to avoid a bug of debugpy that use sys.executable and try to run another gid.exe!!. see
https://github. conf m crosoft/debugpy/issues/ 262

tohil::exec "debugpy.configure(python=" $ny_python')"

tohil::exec "debugpy.listen(5678)"

#tohil::exec "debugpy.wait_for_client()"

return O

Note: The required Python module debugpy is pre-installed in our tohil's Python copy
Then open the folder with the .py file in VS Code
e.g. the folder <GiD>\plugins\Import\meshio

Note: be careful: must use File->Open folder..., not File->Open file, because opening the folder VS will create inside a hidden folder named
‘.vscode’ where can save a file 'launch.json' to store the debug settings.

Select the file gid_meshio.py and set an stop <F9> in the line np. set _pri nt opti ons(threshol d=np. i nf)
Then click in the lower state bar to set as python interpreter the one of GiD (probably initially points to another Python of our system),
e.g. select

<GiD>\scripts\tohil\python\bin\x64\python.exe

Copyright © 2022, GiD, CIMNE 68

GiD

) File Edit Selection View Go Run Terminal Help gid_meshio.py - company-products-api - Visual Studio Code

gid_meshio.py X

read_mesh

my_meshio read mesh(filename):
npl. set_printoptions(threshold=np.inf)

mesh io.read(filename)
[mesh.points,mesh.cells,mesh.cells_dict]

my_meshic write mesh(points,cells,filename):

.literal_eval(cells)

io.M (points,cells)
result=mesh.write(filename)
return result

c:\gid project\scripts\tohil\python\bin\x64\python.exe
Z—P GID-2798-new-import-plugin-using-tohil-meshio™ 6 Jira: Enrique Escolano: > GID-2798 1] Bitbucket: Enrique Escolano: ®oho CRLF {§ Python 3.10.5 64-bit A 0

g m ® F B ¥ @ £ 0 & @

Then start GiD and call G D_Pyt hon_St ar t Debugger Ser ver
(e.g. can write -np- GiD_Python_StartDebuggerServer, or un-comment the line of meshio.tcl #GiD_Python_StartDebuggerServer)

And the first time that run the debug in VS Code <F5> it ask the configuration way to debug: select for example attach to remote debug,
configuring the host=localhost and port=5678

this information is stored in the file .vscode/launch.json, with a content like this

{
/1 Use IntelliSense to | earn about possible attributes.
/1 Hover to view descriptions of existing attributes.
/1 For more information, visit: https://go.mcrosoft.conlfwink/?linki d=830387
"version": "0.2.0",
"configurations": [
"name": "Python: Attach |ocal hostt:5678",
"type": "python",
"request": "attach",
"connect":
"host": "l ocal host",
"port": 5678
}
/1" processld": "${command: pi ckProcess}",
/1"just MyCode": true
}
]
}

In GiD go to menu Files->Import->Meshio
and select some mesh file, like a Kratos .mdpa file to be imported.

then the debugger will be stopped in our break point and can inspect variables, etc.

Copyright © 2022, GiD, CIMNE 69

GiD

> Pythone Attach | ~

WARIABLES

¢ dmechio sesh object>

my meshio read

w CALL STACK

BELAKPOINTS

] ceplione -,
B GID-27T90-new mpon-plugin usng fohil meshic® O B Jeac Enique Escolano: 2 GID-2T98 § Bitbucket: Enigue Escolanc: @040 & Pythonc Attach localhosttS678 (meshio)

@ 2 = E 9 - B e @ ¢ 3

Python show text with W

If pyhton is running in GiD then can call the Tcl GiD procedure called W that show text in a window

e.g.

i mport tohil
tcl=tohil.inmport_tcl()
a=5.2

tcl.Wa)

will show a GiD window with the value of the variable a

Python force reload afile
Using our Tcl command G D_Pyt hon_I nport _Fi |l e (thatdot ohi |l : :i nport) willimport a module in Python,
but if we are developing and modify the .py file doing a new import don't refresh the code in the interpreter.

A trick to do it it to use the Tcl command G D_Pyt hon_Sour ce, then the new code of the file is used without need to restart GiD.

In fact it seems that this is similar to use in Python the function reload of the importlib module

inport inmportlib
i mportlib.rel oad(nodul e)

Copyright © 2022, GiD, CIMNE 70

GiD

Windows 7 issues
Python 3.10 is not supported in Windows 7, it require a missing system library api-ms-win-core-path-11-1-0.dll
We supply this missing feature compiling this alternative: https://github.com/nalexandru/api-ms-win-core-path-HACK

But Windows 7 has other special issues, it seems that don’t use the PATH environment variable to find dlls, then in order to be able to load
the Python dependencies of tohil.dll is necessary to copy to the <GiD> main folder these files (can be located at
<GiD>\scripts\tohil\python\bin\x64)

® python3.dll
® python310.dll
® api-ms-win-core-path-11-1-0.dll

The same happen to load gid.exe, it is necessary to copy to <GiD> the dlls:
* tclget.dll

* tkgeét.dll
® objarray.dll

Copyright © 2022, GiD, CIMNE 71

https://github.com/nalexandru/api-ms-win-core-path-HACK

GiD

macOs issues

The IDLE shell opened from GiD show the menus on the top, like usual in macOs, but trying to close it is closing the whole GiD.

Copyright © 2022, GiD, CIMNE

72

GiD

Future work

® objarray

Implement in tohil C/C++ source code the use of the GiD TclObj type objarray, to store efficiently vectors for the nodes and elements of the
mesh, and do automatic conversion from/to the appropriated Python object. Now it is used a implicit conversion to string that is less efficient
that use the native types of float, double, int, long, etc.

® W or other procs that open GiD Tk windows seems that cannot be called in the IDLE window, that is a Tkinter window opened from

python. It is crashing.
® |t seems the the IDLE shell opened inside GID is not able to debug the Python code, must be studied...
® |t seems that the remote debug from VS Code editor only can handle some function, and the debug step by step cannot enter in other

functions. Must be studied...

Copyright © 2022, GiD, CIMNE 73

	Using Python in GiD
	Tohil Python package
	Tohil 4.3 documentation
	What’s New in Tohil
	What’s New In Tohil 4.3
	What’s New In Tohil 4.2
	What’s New In Tohil 4.1
	What’s New In Tohil 4.0
	What’s New In Tohil 3.2
	What’s New In Tohil 3.0

	The Tohil Tutorial
	1. The Tohil Tutorial
	2. Using Tcl from Python
	3. Using Python From Tcl
	4. Tohil’s Tclobj Python Data Type
	5. Tohil’s Tcldict Python Data Type
	6. TclProcs
	7. Shadow Dictionaries

	Tohil Reference
	Tohil Introduction
	Tohil Python Functions
	Tohil Tcl Functions
	Tohil Types
	Tohil Exceptions
	Tohil Tcl Errors

	Building and Installing Tohil
	Building and Installing on Linux
	Building and Installing on macOS
	Building and Installing on FreeBSD

	Dealing with Bugs
	Tohil Copyright and License

	Install more Python modules
	Run Python as external process
	Run Python inside GiD
	From the lower entry
	IDLE shell
	From an user-macro button
	From a problemtype or plugin

	Real example: meshio GiD plugin
	Debug Python code
	Debug Python from VS Code editor
	Windows 7 issues
	macOs issues
	Future work

